Hypoxia-inducible factor (HIF) transcription factors are well known to control the transcriptional response to hypoxia. Given the importance of cellular response to hypoxia, a number of pharmacological agents to interfere with this pathway have been developed and entered pre-clinical or clinical trial phases. However, how similar or divergent the transcriptional response elicited by different points of interference in cells is currently unknown. We performed RNA-sequencing to analyse the similarities and differences of transcriptional response in HeLa cells treated with hypoxia or chemical agents that stabilise HIF by inhibiting components of the hypoxia signalling pathway - prolyl hydroxylase (PHD) inhibitor or von Hippel-Lindau (VHL) inhibitor. This analysis revealed that hypoxia produces the highest changes in gene transcription, with activation and repression of genes being in large numbers. Treatment with the PHD inhibitor IOX2 or the VHL inhibitor VH032 led mostly to gene activation, majorly via a HIF-dependent manner. These results were also confirmed by qRT-PCR using more specific and/or efficient inhibitors, FG-4592 (PHDs) and VH298 (VHL). PHD inhibition and VHL inhibition mimic gene activation promoted by hypoxia via a HIF-dependent manner. However, gene repression is mostly associated with the hypoxia response and not common to the response elicited by inhibitors of the pathway.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6376255 | PMC |
http://dx.doi.org/10.12688/wellcomeopenres.15044.1 | DOI Listing |
Sci Transl Med
January 2025
Division of Pediatric Hematology/Oncology, Boston Children's Hospital, Boston, MA 02115, USA.
Tissue-specific T cell immune responses play a critical role in maintaining organ health but can also drive immune pathology during both autoimmunity and alloimmunity. The mechanisms controlling intratissue T cell programming remain unclear. Here, we leveraged a nonhuman primate model of acute graft-versus-host disease (aGVHD) after allogeneic hematopoietic stem cell transplantation to probe the biological underpinnings of tissue-specific alloimmune disease using a comprehensive systems immunology approach including multiparameter flow cytometry, population-based transcriptional profiling, and multiplexed single-cell RNA sequencing and TCR sequencing.
View Article and Find Full Text PDFSci Transl Med
January 2025
Department of Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA.
At this stage in the COVID-19 pandemic, most infections are "breakthrough" infections that occur in individuals with prior severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) exposure. To refine long-term vaccine strategies against emerging variants, we examined both innate and adaptive immunity in breakthrough infections. We performed single-cell transcriptomic, proteomic, and functional profiling of primary and breakthrough infections to compare immune responses from unvaccinated and vaccinated individuals during the SARS-CoV-2 Delta wave.
View Article and Find Full Text PDFmBio
January 2025
Centre for Microbiology and Environmental Systems Science, Department of Microbiology and Ecosystem Science, Division of Microbial Ecology, University of Vienna, Vienna, Austria.
Unlabelled: In the gut, microRNAs (miRNAs) produced by intestinal epithelial cells are secreted into the lumen and can shape the composition and function of the gut microbiome. Crosstalk between gut microbes and the host plays a key role in irritable bowel syndrome (IBS) and inflammatory bowel diseases, yet little is known about how the miRNA-gut microbiome axis contributes to the pathogenesis of these conditions. Here, we investigate the ability of miR-21, a miRNA that we found decreased in fecal samples from IBS patients, to associate with and regulate gut microbiome function.
View Article and Find Full Text PDFAging Cell
January 2025
Molecular Biology and Genetics Unit, Transcription and Disease Laboratory, Jawaharlal Nehru Centre for Advanced Scientific Research, Bengaluru, India.
SYNGAP1 is a Ras GTPase-activating protein that plays a crucial role during brain development and in synaptic plasticity. Sporadic heterozygous mutations in SYNGAP1 affect social and emotional behaviour observed in intellectual disability (ID) and autism spectrum disorder (ASD). Although neurophysiological deficits have been extensively studied, the epigenetic landscape of SYNGAP1 mutation-mediated intellectual disability is unexplored.
View Article and Find Full Text PDFJ Vasc Access
January 2025
Glasgow Renal and Transplant Unit, Queen Elizabeth University Hospital, Glasgow, UK.
Background: The information and decision support needs required to embed a patient-centred strategy are challenging, as several haemodialysis vascular access strategies are possible with significant differences in short- and long-term outcomes of potential treatment options. We aimed to explore and describe stakeholder perspectives on information needs when making decisions about vascular access (VA) for haemodialysis.
Methods: We performed thematic analysis of seven (six online, one in person) focus group discussions including transcripts, post-it phrases and text responses with 14 patients and 12 vascular access professionals (four nephrologists, three surgeons and five nurses - Vascular access nurse specialists/Education and dialysis nurses) who participated in at total of six online and one in person focus group.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!