Background: Nowadays, transplantation of Bone marrow-derived Mesenchymal Stromal Cells (BMSCs) is currently an important alternative therapy for patient's type 1 diabetes mellitus. But a number of critical obstacles lie ahead of this new strategy including reducing stem cell homing to the damaged tissue due to oxidative stress. The purpose of the present study was to investigate whether preconditioning of BMSCs with SDF-1 could enhance their homing to the pancreas and promote regeneration of the pancreatic β cells after being intravenously injected.
Methods: Mice BMSCs were isolated and expanded. Cell proliferation was assayed by MTT Assay. Preconditioning was performed with 10 SDF-1α for 24 . Male NMRI mice were injected with high-dose STZ (150 ). The preconditioned or un-preconditioned BMSCs at a dose of 1×10 cells were infused via the tail vein. Blood and pancreatic tissue samples were taken from all mice for flow cytometry, biochemical and histological studies.
Results: Proliferation and homing of BMSCs to the pancreas were significantly increased in the BMSCs with SDF-1α preconditioning. Differentiation of transplanted BMSCs, were significantly increased in preconditioning group. Although BMSCs without SDF-1 preconditioning exhibited remarkable recovery of pancreatic islets structure but this recovery were significantly increased in the BMSCs with SDF-1α preconditioning.
Conclusion: Our results showed the effectiveness of SDF-1α preconditioning in BMSCs transplantation of STZ induced diabetes mice which might be achieved through improvement of BMSCs homing into the injured pancreas.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6359696 | PMC |
Gels
November 2024
IRCCS Ospedale Galeazzi-Sant'Ambrogio, 20157 Milan, Italy.
Strategies to repair the meniscus have achieved limited success; thus, a cell-based therapy combined with an appropriate biocompatible scaffold could be an interesting alternative to overcome this issue. The aim of this project is to analyze different cell populations and a collagen gel scaffold as a potential source for meniscus tissue engineering applications. Dermal fibroblasts (DFs) and mesenchymal stem cells (MSCs) isolated from adipose tissue (ASCs) or bone marrow (BMSCs) were analyzed.
View Article and Find Full Text PDFNan Fang Yi Ke Da Xue Xue Bao
December 2024
Graduate School, Anhui University of Chinese Medicine, Hefei 230031, China.
Objectives: To observe the role of miR-139-5p and Notch1 signaling pathway in regulation of homing of bone mesenchymal stem cells (BMSCs) of asthmatic rats.
Methods: Normal rat BMSCs were co-cultured with bronchial epithelial cells from normal or asthmatic rats, followed by transfection with miR-139-5p mimics or a negative control sequence. The changes in cell viability and cell cycle were analyzed, and the cellular expressions of CXCR4 and SDF-1 were detected using immunofluorescence staining.
Front Bioeng Biotechnol
December 2024
Assisted Reproduction Unit, Department of Obstetrics and Gynecology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China.
Introduction: Extensive trauma frequently disrupts endometrial regeneration by diminishing endometrial stem cells/progenitor cells, affecting female fertility. While bone marrow mesenchymal stem cell (BMSC) transplantation has been suggested as an approach to address endometrial injury, it comes with certain limitations. Recent advancements in endometrial epithelial organoids (EEOs) have displayed encouraging potential for endometrial regeneration.
View Article and Find Full Text PDFFree Radic Biol Med
December 2024
Institute of Rocket Force Medicine, Third Military Medical University (Army Medical University), 400038, Chongqing, China; State Key Laboratory of Trauma and Chemical Poisoning, Third Military Medical University (Army Medical University), 400038, Chongqing, China. Electronic address:
Spaceflight-induced osteoporosis (SFOP) is a detrimental healthcare consequence during spaceflight. Weightlessness and ionizing radiation were main environmental factors that contribute to SFOP, especially in the manned deep space voyages. However, currently there is scarce effective method to treat SFOP.
View Article and Find Full Text PDFTissue Eng Part A
December 2024
Department of Orthopedics, Municipal Hospital Affiliated to Taizhou University, Taizhou City, China.
Senescence and osteogenic differentiation potential loss limited bone nonunion treatment effects of bone marrow-derived mesenchymal stem cells (BMSCs). MiR-100-5p/Lysine(K)-specific demethylase 6B (KDM6B) can inhibit osteogenesis, but their effects on bone union remain unclear. This study aims to investigate the effects of miR-100-5p/KDM6B on osteogenic differentiation and bone defects.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!