Designing and developing new biostimulants is a crucial process which requires an accurate testing of the product effects on the morpho-physiological traits of plants and a deep understanding of the mechanism of action of selected products. Product screening approaches using omics technologies have been found to be more efficient and cost effective in finding new biostimulant substances. A screening protocol based on the use of high-throughput phenotyping platform for screening new vegetal-derived protein hydrolysates (PHs) for biostimulant activity followed by a metabolomic analysis to elucidate the mechanism of the most active PHs has been applied on tomato crop. Eight PHs (A-G, I) derived from enzymatic hydrolysis of seed proteins of and species were foliarly sprayed twice during the trial. A non-ionic surfactant Triton X-100 at 0.1% was also added to the solutions before spraying. A control treatment foliarly sprayed with distilled water containing 0.1% Triton X-100 was also included. Untreated and PH-treated tomato plants were monitored regularly using high-throughput non-invasive imaging technologies. The phenotyping approach we used is based on automated integrative analysis of photosynthetic performance, growth analysis, and color index analysis. The digital biomass of the plants sprayed with PH was generally increased. In particular, the relative growth rate and the growth performance were significantly improved by PHs A and I, respectively, compared to the untreated control plants. Kinetic chlorophyll fluorescence imaging did not allow to differentiate the photosynthetic performance of treated and untreated plants. Finally, MS-based untargeted metabolomics analysis was performed in order to characterize the functional mechanisms of selected PHs. The treatment modulated the multi-layer regulation process that involved the ethylene precursor and polyamines and affected the ROS-mediated signaling pathways. Although further investigation is needed to strengthen our findings, metabolomic data suggest that treated plants experienced a metabolic reprogramming following the application of the tested biostimulants. Nonetheless, our experimental data highlight the potential for combined use of high-throughput phenotyping and metabolomics to facilitate the screening of new substances with biostimulant properties and to provide a morpho-physiological and metabolomic gateway to the mechanisms underlying PHs action on plants.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6376207 | PMC |
http://dx.doi.org/10.3389/fpls.2019.00047 | DOI Listing |
Front Plant Sci
December 2024
Department of Agriculture and Forest Sciences, University of Tuscia, Viterbo, Italy.
Introduction: Considering that plant biostimulants can be sprayed multiple times on leafy crops even just before harvest, it is relevant to know the impact of biostimulant applications on population dynamics of lettuce leaves to ensure food safety. Two trials were carried out to investigate whether the applications of a seaweed extract and a vegetal-derived protein hydrolysate (PH) could affect the growth in shake flasks (Exp. 1) and plant growth and survival of artificially inoculated on the leaf surface of lettuce grown in a floating system (Exp.
View Article and Find Full Text PDFJ Sci Food Agric
January 2025
Department of Horticulture and Landscape Architecture, Purdue University, West Lafayette, IN, USA.
Background: Vegetal-derived protein hydrolysates (PHs) have been recognized as sustainable biostimulant products due to their beneficial effects on crops. However, most studies on PHs have been conducted at a fixed ratio of nitrate-to-ammonium (NO :NH ) without considering other N application scenarios, leading to inconsistent results among the studies. This study compared the influences of N levels (2 or 10 mM N), NO:NH ratios (100:0, 75:25, 50:50, or 25:75), and PH application methods - control, foliar spray (PH-F) or root application (PH-R) - on the yield, morphology, nutrients, and nutraceutical quality of hydroponic lettuce.
View Article and Find Full Text PDFFront Plant Sci
January 2024
Department of Agriculture and Forest Sciences, University of Tuscia, Viterbo, Italy.
The demand for high-quality strawberries continues to grow, emphasizing the need for innovative agricultural practices to enhance both yield and fruit quality. In this context, the utilization of natural products, such as biostimulants, has emerged as a promising avenue for improving strawberry production while aligning with sustainable and eco-friendly agricultural approaches. This study explores the influence of a bacterial filtrate (BF), a vegetal-derived protein hydrolysate (PH), and a standard synthetic auxin (SA) on strawberry, investigating their effects on yield, fruit quality, mineral composition and metabolomics of leaves and fruits.
View Article and Find Full Text PDFFront Plant Sci
August 2023
Department of Agriculture and Forest Sciences, University of Tuscia, Viterbo, Italy.
In addition to be used as a plant protection agent, copper (Cu) is also an essential micronutrient for plant growth and development. The bioavailability of Cu in agricultural systems can be limited due to its specific physical-chemical characteristics, leading to imbalances in plant production. To address this issue, an experimental trial was conducted on Genovese basil ( L.
View Article and Find Full Text PDFPlants (Basel)
February 2023
Department of Agricultural Sciences, University of Naples Federico II, Via Università 100, 80055 Portici, Italy.
Salinity in water and soil is a critical issue for food production. Using biostimulants provides an effective strategy to protect crops from salinity-derived yield losses. The research supports the effectiveness of protein hydrolysate (PH) biostimulants based on their source material.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!