This paper provides strong evidence for the contribution of the phylum Firmicutes in mediating the primary precipitation of Mg-rich carbonates (hydromagnesite, dolomite, magnesite, and nesquehonite) in recent microbialites from a highly alkaline and ephemeral inland lake (Las Eras, Central Spain). The carbonate mineral precipitation occurs sequentially as the microbial mats decay. Scanning electron microscopy (SEM) provided solid proof that hydromagnesite nucleation is initiated on the exopolymeric substances (EPS) and the microbial cells associated to the microbial mat degradation areas. The progressive mineralization of the EPS and bacterial cells by hydromagnesite plate-like crystals on their surface, results in the entombment of the bacteria and formation of radiating aggregates of hydromagnesite crystals. The hydrous phases, mostly hydromagnesite, were produced at a high percentage in the first stages of the microbial degradation of organic matter. When the availability of organic substrates declines, the heterotrophs tend to reduce their number and metabolic activity, remain dormant. At this stage, the anhydrous phases, dolomite and magnesite, nucleate on bacterial nanoglobules and/or collapsed cells. Evidence for the sequential formation of the Mg-rich carbonates trough the decay of organic matter by a fermentative EPS-forming bacterium isolated from the microbialites, , is drawn through a comparative analysis of carbonate formation in both natural and experimental settings. This study will help to constrain potential mechanisms of carbonate formation in natural systems, which are of fundamental importance not only for understanding modern environments but also as a window into the geologic past of Earth and potentially Mars.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6376964 | PMC |
http://dx.doi.org/10.3389/fmicb.2019.00148 | DOI Listing |
Sci Rep
January 2025
Ali I. Al-Naimi Petroleum Engineering Research Center, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia.
Microbial impacts on early carbonate diagenesis, particularly the formation of Mg-carbonates at low temperatures, have long eluded scientists. Our breakthrough laboratory experiments with two species of halophilic aerobic bacteria and marine carbonate grains reveal that these bacteria created a distinctive protodolomite (disordered dolomite) rim around the grains. Scanning Electron Microscopy (SEM) and X-ray Diffraction (XRD) confirmed the protodolomite formation, while solid-state nuclear magnetic resonance (NMR) revealed bacterial interactions with carboxylated organic matter, such as extracellular polymeric substances (EPS).
View Article and Find Full Text PDFProc Natl Acad Sci U S A
December 2024
Environmental Biophysics and Molecular Ecology Program, Department of Marine and Coastal Sciences, Rutgers, The State University of New Jersey, New Brunswick, NJ 08901.
Foraminifera are unicellular protists capable of precipitating calcite tests, which fossilize and preserve geochemical signatures of past environmental conditions dating back to the Cambrian period. The biomineralization mechanisms responsible for the mineral structures, which are key to interpreting palaeoceanographic signals, are poorly understood. Here, we present an extensive analysis of the test-bound proteins.
View Article and Find Full Text PDFACS Omega
November 2024
College of Materials and Chemistry & Chemical Engineering, Chengdu University of Technology, Chengdu 610059, China.
Low-temperature boiling chlorination is the most common approach used to achieve a clean preparation of TiCl from ilmenite concentrates with high contents of calcium and magnesium impurities. However, this process did not systematically investigate the impact of the Ti/C ratio of the raw materials on the chlorination efficiency of Ti, Ca, and Mg elements. Thus, the influence of the carbon allocation proportion on the carbothermal reduction and boiling chlorination process of ilmenite concentrates with high contents of calcium and magnesium impurities was investigated in this study.
View Article and Find Full Text PDFEnviron Res
May 2024
School of Metallurgy, Northeastern University, Shenyang, 110819, China.
To achieve highly efficient extraction of phosphorus (P) and comprehensive utilization of phosphate tailings, a two-stage leaching-precipitation method was proposed. Phosphate tailings primarily consisted of dolomite, fluorapatite, and quartz. During the first-stage leaching, the large majority of dolomite was selectively dissolved and the leaching efficiency of Mg reached 93.
View Article and Find Full Text PDFNanoscale
January 2024
University of Pannonia, Research Institute of Biomolecular and Chemical Engineering, Nanolab, Egyetem st. 10, 8200, Veszprém, Hungary.
The formation of aragonite under ambient conditions is typically linked to Mg-rich aqueous environments. The grains that form in such environments show peculiar properties such as aggregate-like appearance and mesocrystalline character. We tested the effect of dissolved Mg ions on the formation of aragonite mesocrystals by synthesizing aragonite with an automatic titrator at constant pH and at different dissolved Mg : Ca ratios, and by studying the properties of the precipitated material with various scanning transmission electron microscopy (STEM) techniques.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!