Regulation of TLR signaling pathways by microRNAs: implications in inflammatory diseases.

Cent Eur J Immunol

Centro de Investigacion en Alimentacion y Desarrollo, AC, Hermosillo, Mexico.

Published: December 2018

AI Article Synopsis

  • The immune response is crucial for maintaining balance in the body, but improper activation of inflammation can lead to diseases like autoimmune disorders and cancer.
  • MicroRNAs (miRNAs) play a key role in regulating the immune response by modulating the activity of toll-like receptors (TLRs) and associated signaling pathways.
  • This review explores how miRNAs interact with TLRs and their impact on various inflammatory diseases, including rheumatoid arthritis, lupus, and infections.

Article Abstract

The control of the immune response during the development of some diseases is crucial for the maintenance or restoration of homeostasis. Several mechanisms can initiate inflammation, one of which is the activation of toll-like receptors (TLRs), necessary to initiate the immune response to eliminate an infection. However, inappropriate activation can compromise immunological homeostasis, leading to pathologies such as autoimmune diseases, chronic inflammation, and even cancer. Regulatory mechanisms that intervene in the initiation or modulation of inflammation include microRNAs (miRNAs), which have emerged as key post-transcriptional regulators of proteins involved in distinct cellular processes, such as regulation of the immune response. The focus of this review is on the diverse roles of miRNAs in the regulation of TLR-signaling pathways by targeting multiple molecules, including TLRs, the signaling proteins and cytokines induced by TLRs. It will also address the relationships of these molecules with some diseases that involve inflammation such as rheumatoid arthritis (RA), systemic lupus erythematosus (SLE), cancer, as well as bacterial or viral infections.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6384427PMC
http://dx.doi.org/10.5114/ceji.2018.81351DOI Listing

Publication Analysis

Top Keywords

immune response
12
regulation tlr
4
tlr signaling
4
signaling pathways
4
pathways micrornas
4
micrornas implications
4
implications inflammatory
4
diseases
4
inflammatory diseases
4
diseases control
4

Similar Publications

Purpose: Immune checkpoint inhibitors (ICIs) are now first-line therapy for most patients with recurrent/metastatic head and neck squamous cell carcinoma (R/M HNSCC), and cetuximab is most often used as subsequent therapy. However, data describing cetuximab efficacy in the post-ICI setting are limited.

Methods: We performed a single-institution retrospective analysis of patients with R/M HNSCC treated with cetuximab, either as monotherapy or in combination with chemotherapy, after receiving an ICI.

View Article and Find Full Text PDF

Most diffuse large B-cell lymphoma (DLBCL) patients treated with immunotherapies such as bispecific antibodies (BsAb) or chimeric antigen receptor (CAR) T cells fail to achieve durable treatment responses, underscoring the need for a deeper understanding of mechanisms that regulate the immune environment and response to treatment. Here, an integrative, multi-omic approach was applied to multiple large independent datasets in order to characterize DLBCL immune environments, and to define their association with tumor cell-intrinsic genomic alterations and outcomes to CD19-directed CAR T-cell and CD20 x CD3 BsAb therapies. This approach effectively segregated DLBCLs into four immune quadrants (IQ) defined by cell-of-origin and immune-related gene set expression scores.

View Article and Find Full Text PDF

A single-cell atlas of the Culex tarsalis midgut during West Nile virus infection.

PLoS Pathog

January 2025

Department of Microbiology, Immunology and Pathology, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, Colorado, USA.

The mosquito midgut functions as a key interface between pathogen and vector. However, studies of midgut physiology and virus infection dynamics are scarce, and in Culex tarsalis-an extremely efficient vector of West Nile virus (WNV)-nonexistent. We performed single-cell RNA sequencing on Cx.

View Article and Find Full Text PDF

Background: Antiretroviral therapy (ART) restores cellular immunity, significantly reducing AIDS-related mortality and morbidity thus improving the quality of life among People living with HIV (PLHIV). Studies done in several countries show a decline in AIDS defining cancers (ADCs) with the introduction of ART however the increased longevity has led to the increase of Non-AIDS defining cancers (NADCs). The study was aimed at studying the changing spectrum and trends of cancer among Human Immunodeficiency Virus (HIV) patients in southwestern Uganda.

View Article and Find Full Text PDF

Suppressing Tymovirus replication in plants using a variant of ubiquitin.

PLoS Pathog

January 2025

Department of Microbiology, Faculty of Science, University of Manitoba, Winnipeg, Manitoba, Canada.

RNA viruses have evolved numerous strategies to overcome host resistance and immunity, including the use of multifunctional proteases that not only cleave viral polyproteins during virus replication but also deubiquitinate cellular proteins to suppress ubiquitin (Ub)-mediated antiviral mechanisms. Here, we report an approach to attenuate the infection of Arabidopsis thaliana by Turnip Yellow Mosaic Virus (TYMV) by suppressing the polyprotein cleavage and deubiquitination activities of the TYMV protease (PRO). Performing selections using a library of phage-displayed Ub variants (UbVs) for binding to recombinant PRO yielded several UbVs that bound the viral protease with nanomolar affinities and blocked its function.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!