Because of their critical role in regulating immune responses, macrophages have continuously been the subject of intensive research and represent a promising therapeutic target in many disorders, such as autoimmune diseases, atherosclerosis, and cancer. RNAi-mediated gene silencing is a valuable approach of choice to probe and manipulate macrophage function; however, the transfection of macrophages with siRNA is often considered to be technically challenging, and, at present, few methodologies dedicated to the siRNA transfer to macrophages are available. Here, we present a protocol of using polyethyleneimine-coated superparamagnetic iron oxide nanoparticles (PEI-SPIONs) as a vehicle for the targeted delivery of siRNA to macrophages. PEI-SPIONs are capable of binding and completely condensing siRNA when the Fe:siRNA weight ratio reaches 4 and above. In vitro, these nanoparticles can efficiently deliver siRNA into primary macrophages, as well as into the macrophage-like RAW 264.7 cell line, without compromising cell viability at the optimal dose for transfection, and, ultimately, they induce siRNA-mediated target gene silencing. Apart from being used for in vitro siRNA transfection, PEI-SPIONs are also a promising tool for delivering siRNA to macrophages in vivo. In view of its combined features of magnetic property and gene-silencing ability, systemically administered PEI-SPION/siRNA particles are expected not only to modulate macrophage function but also to enable macrophages to be imaged and tracked. In essence, PEI-SPIONs represent a simple, safe, and effective nonviral platform for siRNA delivery to macrophages both in vitro and in vivo.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.3791/58660 | DOI Listing |
Vet Res Commun
January 2025
Departamento de Microbiología e Inmunología, Facultad de Ciencias Exactas, Físico-Químicas y Naturales, Universidad Nacional de Río Cuarto, Ruta N 36 Km 601, Río Cuarto City, 5800, Córdoba, Argentina.
Post-weaning diarrhea (PWD) is a major concern for pig producers, as stress and early weaning increase susceptibility to enteropathogens like enterotoxigenic Escherichia coli (ETEC) and Salmonella enterica subsp. enterica serovar Typhimurium (S. Typhimurium).
View Article and Find Full Text PDFFASEB J
January 2025
Department of Cardiovascular Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China.
Sepsis-induced acute lung injury (ALI) is a common acute and severe reason of death in the intensive care unit. Although the pathogenesis is complicated and multifactorial, elevated inflammation and oxidative stress are considered as fundamental mechanisms for the progression of ALI. Anemonin is a natural compound with diverse biological properties including anti-inflammatory and anti-oxidative effects.
View Article and Find Full Text PDFJ Coll Physicians Surg Pak
January 2025
Department of Rheumatology and Immunology, The Second Affiliated Hospital of Anhui Medical University, Anhui, China.
Objective: To investigate the characteristics of Adult-onset Still's disease (AOSD) patients with macrophage activation syndrome (MAS) and explore the risk factors for the development of MAS.
Study Design: A case-control study. Place and Duration of the Study: Department of Rheumatology and Immunology, the Second Hospital of Anhui Medical University, Anhui, China, from January 2008 to June 2024.
Cancer Med
January 2025
Department of Cardiothoracic Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, People's Republic of China.
Background: Esophageal squamous cell carcinoma (ESCC) is one of the most prevalent and lethal malignancies worldwide. Despite progress in immunotherapy for cancer treatment, its application and efficacy in ESCC remain limited. Therefore, there is an ongoing need to explore potential molecules and therapeutic strategies related to tumor immunity in ESCC.
View Article and Find Full Text PDFCell Commun Signal
January 2025
Department of Vascular & Cardiology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
Purpose: Cardiomyocyte death is a major cytopathologic response in acute myocardial infarction (AMI) and involves complex inflammatory interactions. Although existing reports indicating that mixed lineage kinase domain-like protein (MLKL) is involved in macrophage necroptosis and inflammasome activation, the downstream mechanism of MLKL in necroptosis remain poorly characterized in AMI.
Methods: MLKL knockout mice (MLKL), RIPK3 knockout mice (RIPK3), and macrophage-specific MLKL conditional knockout mice (MLKL) were established.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!