AI Article Synopsis

  • PI3Kδ, mostly found in immune cells, plays a key role in activating leukocytes and is targeted for treatments of inflammatory diseases and blood cancers.
  • The study analyzed 17 crystallographic complexes to create 94 pharmacophore models, using QSAR modeling to identify the best predictors of bioactivity from a diverse set of 79 inhibitors.
  • The top QSAR model demonstrated strong predictive capabilities and was used to search the NCI database, which led to the identification of two potential new PI3Kδ inhibitors with promising activity.

Article Abstract

Background: PI3Kδ is predominantly expressed in hematopoietic cells and participates in the activation of leukocytes. PI3Kδ inhibition is a promising approach for treating inflammatory diseases and leukocyte malignancies. Accordingly, we decided to model PI3Kδ binding.

Methods: Seventeen PI3Kδ crystallographic complexes were used to extract 94 pharmacophore models. QSAR modelling was subsequently used to select the superior pharmacophore(s) that best explain bioactivity variation within a list of 79 diverse inhibitors (i.e., upon combination with other physicochemical descriptors).

Results: The best QSAR model (r2 = 0.71, r2 LOO = 0.70, r2 press against external testing list of 15 compounds = 0.80) included a single crystallographic pharmacophore of optimal explanatory qualities. The resulting pharmacophore and QSAR model were used to screen the National Cancer Institute (NCI) database for new PI3Kδ inhibitors. Two hits showed low micromolar IC50 values.

Conclusion: Crystallography-based pharmacophores were successfully combined with QSAR analysis for the identification of novel PI3Kδ inhibitors.

Download full-text PDF

Source
http://dx.doi.org/10.2174/1573406415666190222125333DOI Listing

Publication Analysis

Top Keywords

pi3kδ inhibitors
12
qsar analysis
8
qsar model
8
pi3kδ
7
qsar
5
discovery phosphoinositide
4
phosphoinositide 3-kinase
4
3-kinase delta
4
delta pi3kδ
4
inhibitors
4

Similar Publications

How I diagnose and treat systemic mastocytosis with an associated hematologic neoplasm.

Blood

January 2025

Guy's & St Thomas' NHS Foundation Trust, London, United Kingdom.

Over the last decade significant advances have been made by honing in on the diagnostic evaluation and the significance of molecular profiles in patients with systemic mastocytosis (SM), non-advanced and advanced.This is reflected in the 2022 iterations of the World Health Organization Edition 5 and International Consensus Criteria classifications.The impact of targeted KIT inhibitor therapies on patients treated within global trials has demonstrated significant improvements in the prognosis and overall survival for patients, leading to a change the treatment paradigm.

View Article and Find Full Text PDF

Robust genetic characterization of paediatric AML has demonstrated that fusion oncogenes are highly prevalent drivers of AML leukemogenesis in young children. Identification of fusion oncogenes associated with adverse outcomes has facilitated risk stratification of patients, although successful development of precision medicine approaches for most fusion-driven AML subtypes have been historically challenging. This knowledge gap has been in part due to difficulties in targeting structural alterations involving transcription factors and in identification of a therapeutic window for selective inhibition of the oncofusion without deleterious effects upon essential wild-type proteins.

View Article and Find Full Text PDF

BTK inhibitors (BTKi) are an established standard of care in CLL. The covalent BTKi ibrutinib, acalabrutinib and zanubrutinib bind to BTK C481 and are all susceptible to the C481S mutation. Non-covalent BTKi including pirtobrutinib overcome C481S resistance but are associated with multiple variant (non-C481) BTK mutations, including those associated with resistance to acalabrutinib and zanubrutinib (T474 codon and L528W mutations).

View Article and Find Full Text PDF

Background: Focal segmental glomerulosclerosis (FSGS) and treatment-resistant minimal change disease (TR-MCD) are heterogeneous disorders with subgroups defined by distinct underlying mechanisms of glomerular and tubulointerstitial injury. A non-invasive urinary biomarker profile has been generated to identify patients with intra-kidney tumor necrosis factor (TNF)-activation and to predict response to anti-TNF treatment. We conducted this proof-of-concept, multi-center, open-label clinical trial to test the hypothesis that in patients with FSGS or TR-MCD and evidence of intra-renal TNF activation based on their biomarker profile, short-term treatment with adalimumab would reverse the elevated urinary excretion of MCP-1 and TIMP-1.

View Article and Find Full Text PDF

Background: Nephrology has seen an uptake in transition to remote care delivery. The impact of telenephrology care on chronic kidney disease (CKD) progression is not well defined.

Methods: We analyzed data from patients naturally selected for telenephrology versus standard, in-person visits.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!