Download full-text PDF

Source
http://dx.doi.org/10.1177/1745691618809384DOI Listing

Publication Analysis

Top Keywords

promoting healing
4
healing reconciliation
4
reconciliation rwanda
4
rwanda generating
4
generating active
4
active bystandership
4
bystandership police
4
police unnecessary
4
unnecessary harm
4
harm fellow
4

Similar Publications

A Conjugated Oligomer with Drug Efflux Pump Inhibition and Photodynamic Therapy for Synergistically Combating Resistant Bacteria.

ACS Appl Mater Interfaces

January 2025

Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, School of Chemistry and Chemical Engineering, Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, Shaanxi Normal University, Xi'an 710119, P. R. China.

High expression of drug efflux pump makes antibiotics ineffective against bacteria, leading to drug-resistant strains and even the emergence of "superbugs". Herein, we design and synthesize a dual functional o-nitrobenzene (NB)-modified conjugated oligo-polyfluorene vinylene (OPFV) photosensitizer, OPFV-NB, which can depress efflux pump activity and also possesses photodynamic therapy (PDT) for synergistically overcoming drug-resistant bacteria. Upon light irradiation, the OPFV-NB can produce aldehyde active groups to covalently bind outer membrane proteins, such as tolerant colicin (TolC), blocking drug efflux of bacteria.

View Article and Find Full Text PDF

Background: Chronic hard-to-heal wounds, such as diabetic foot ulcers, venous leg ulcers, and pressure ulcers, present significant safety concerns, patient burdens, and challenges to health care systems globally.

Objective: To review the mechanism of action and clinical function of bromelain-based enzymatic debridement (BBD) in the context of wound care, focusing on the mechanism of action of BBD and its formulation for chronic wounds in particular.

Methods: A literature review was conducted to assess both bromelain's mechanism of action as well as clinical and preclinical studies on the use of BBD, searching the PubMed and Google Scholar databases for articles published between November 1992 and July 2024.

View Article and Find Full Text PDF

Background: The Wound Care Collaborative Community (WCCC) assesses shortcomings and unmet needs in wound care by partnering with key stakeholders, such as the National Institutes of Health, the US Food and Drug Administration (FDA), industry leaders, and expert health care providers and researchers, to advance the study of wound healing. Through this work, the WCCC has identified a few key barriers to innovation in wound care. The WCCC aims to accelerate the development of science-based, patient-centered solutions and address public policy challenges related to ensuring patients receive early access to innovative treatment options.

View Article and Find Full Text PDF

Purpose: Corneal alkali burns are severe ocular injuries characterized by intense inflammation, tissue damage, and vision impairment, with current treatments often insufficient in restoring corneal function and clarity. This study aimed to evaluate the therapeutic effects of recombinant thrombomodulin domain 1 (rTMD1) in the treatment of corneal alkali burns, focusing on its impact on inflammation, tissue repair, fibrosis, and neovascularization.

Methods: A murine model of corneal alkali burn was utilized to investigate the therapeutic potential of rTMD1.

View Article and Find Full Text PDF

PRMT1-Mediated Arginine Methylation Promotes Corneal Epithelial Wound Healing via Epigenetic Regulation of ANXA3.

Invest Ophthalmol Vis Sci

January 2025

State Key Laboratory of Ophthalmology, Optometry and Visual Science, Eye Hospital, Wenzhou Medical University, Wenzhou, China.

Purpose: Protein arginine methyltransferase 1 (PRMT1) is an integral constituent of numerous cellular processes. However, its role in corneal epithelial wound healing (CEWH) remains unclear. This study investigates the impact of PRMT1 on cellular mechanisms underlying corneal epithelial repair and its potential to improve wound healing outcomes.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!