Background: The glutamate type 1 transporter (GLT1) plays a major role in glutamate homeostasis in the brain. Although alterations of GLT1 activity have been linked to persistent pain, the significance of these changes is poorly understood. Focusing on the rostral ventromedial medulla, a key site in pain modulation, we examined the expression and function of GLT1 and related transcription factor kappa B-motif binding phosphoprotein (KBBP) in rats after adjuvant-induced hind paw inflammation.

Results: After inflammation, GLT1 and KBBP showed an early upregulation and gradual transition to downregulation that lasted throughout the eight-week observation period. Nitration of GLT1 was reduced at 30 min and increased at eight weeks after inflammation, suggesting an initial increase and later decrease in transporter activity. Mechanical hyperalgesia and paw edema exhibited an initial developing phase with peak hyperalgesia at 4 to 24 h, a subsequent attenuating phase, followed by a late persistent phase that lasted for months. The downregulation of GLT1 occurred at a time when hyperalgesia transitioned into the persistent phase. In the rostral ventromedial medulla, pharmacological block with dihydrokainic acid and RNAi of GLT1 and KBBP increased nociception and overexpression of GLT1 reversed persistent hyperalgesia. Further, the initial upregulation of GLT1 and KBBP was blocked by local anesthetic block, and pretreatment with dihydrokainic acid facilitated the development of hyperalgesia.

Conclusions: These results suggest that the initial increased GLT1 activity depends on injury input and serves to dampen the development of hyperalgesia. However, later downregulation of GLT1 fosters the net descending facilitation as injury persists, leading to the emergence of persistent pain.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6348548PMC
http://dx.doi.org/10.1177/1744806918825044DOI Listing

Publication Analysis

Top Keywords

glt1 kbbp
12
glt1
11
glt1 activity
8
persistent pain
8
rostral ventromedial
8
ventromedial medulla
8
persistent phase
8
downregulation glt1
8
dihydrokainic acid
8
persistent
5

Similar Publications

Background: The glutamate type 1 transporter (GLT1) plays a major role in glutamate homeostasis in the brain. Although alterations of GLT1 activity have been linked to persistent pain, the significance of these changes is poorly understood. Focusing on the rostral ventromedial medulla, a key site in pain modulation, we examined the expression and function of GLT1 and related transcription factor kappa B-motif binding phosphoprotein (KBBP) in rats after adjuvant-induced hind paw inflammation.

View Article and Find Full Text PDF

Upregulation of glutamate transporter GLT-1 by mTOR-Akt-NF-кB cascade in astrocytic oxygen-glucose deprivation.

Glia

December 2013

Department of Neurobiology, Key Laboratory of Medical Neurobiology of Ministry of Health of China, Zhejiang Province Key Laboratory of Neurobiology, Zhejiang University School of Medicine, Hangzhou, Zhejiang, People's Republic of China; Department of Neurology, Second Clinical College, North Sichuan Medical College, Nanchong, Sichuan, People's Republic of China.

Excessive extracellular glutamate leads to neuronal death in central nervous system. Excitatory glutamate transporter subtype 2 (GLT-1) carries bulk of glutamate reuptake in cerebral ischemia. Although GLT-1 expression fluctuates during the period of ischemia, little is known about its regulatory mechanism.

View Article and Find Full Text PDF

Insulin increases glutamate transporter GLT1 in cultured astrocytes.

Biochem Biophys Res Commun

February 2011

Department of Neurobiology, Key Laboratory of Medical Neurobiology of Ministry of Health of China, Zhejiang Province Key Laboratory of Neurobiology, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, PR China.

The astroglial cell-specific glutamate transporter subtype 2 (excitatory amino acid transporter 2, GLT1) plays an important role in excitotoxicity that develops after damage to the central nervous system (CNS) is incurred. Both the protein kinase C signaling pathway and the epidermal growth factor (EGF) pathway have been suggested to participate in the modulation of GLT1, but the modulatory mechanisms of GLT1 expression are not fully understood. In the present study, we aimed to evaluate the effects of insulin on GLT1 expression.

View Article and Find Full Text PDF

The neuron-astrocyte synaptic complex is a fundamental operational unit of the nervous system. Astroglia regulate synaptic glutamate, via neurotransmitter transport by GLT1/EAAT2. Astroglial mechanisms underlying this essential neuron-glial communication are not known.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!