Discovery and Characterization of a Nitroreductase Capable of Conferring Bacterial Resistance to Chloramphenicol.

Cell Chem Biol

Department of Pathology and Immunology, Washington University in St Louis School of Medicine, Saint Louis, MO 63110, USA; The Edison Family Center for Genome Sciences and Systems Biology, Washington University in St Louis School of Medicine, Saint Louis, MO 63110, USA; Department of Molecular Microbiology, Washington University in St Louis School of Medicine, Saint Louis, MO 63110, USA; Department of Biomedical Engineering, Washington University in St Louis, Saint Louis, MO 63110, USA. Electronic address:

Published: April 2019

Widespread antibiotic resistance has led to the reappraisal of abandoned antibiotics including chloramphenicol. However, enzyme(s) underlying one form of chloramphenicol resistance, nitroreduction, have eluded identification. Here we demonstrate that expression of the Haemophilus influenzae nitroreductase gene nfsB confers chloramphenicol resistance in Escherichia coli. We characterized the enzymatic product of H. influenzae NfsB acting on chloramphenicol and found it to be amino-chloramphenicol. Kinetic analysis revealed reduction of diverse substrates including the incomplete reduction of 5-nitro antibiotics metronidazole and nitrofurantoin, likely resulting in activation of these antibiotic pro-drugs to their cytotoxic forms. We observed that expression of the H. influenzae nfsB gene in E. coli results in significantly increased susceptibility to metronidazole. Finally, we found that in this strain metronidazole attenuates chloramphenicol resistance synergistically, and in vitro metronidazole weakly inhibits chloramphenicol reduction by NfsB. Our findings reveal the underpinnings of a chloramphenicol resistance mechanism nearly 70 years after its description.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6474809PMC
http://dx.doi.org/10.1016/j.chembiol.2019.01.007DOI Listing

Publication Analysis

Top Keywords

chloramphenicol resistance
16
chloramphenicol
8
influenzae nfsb
8
resistance
6
discovery characterization
4
characterization nitroreductase
4
nitroreductase capable
4
capable conferring
4
conferring bacterial
4
bacterial resistance
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!