Background: Cancer-associated fibroblasts (CAFs) are the predominant residents in the breast tumor microenvironment. In our work, we found activation of DNA damage-independent ATM (oxidized ATM), enhanced glycolysis and aberrant metabolism-associated gene expressions in breast CAFs. Nevertheless, whether and how oxidized ATM regulates the glycolytic activity of CAFs keep in unveil. Recently, a reverse Warburg effect was observed in tumor tissues, in which host cells (such as CAFs, PSCs) in the tumor microenvironment have been found to "fuel" the cancer cells via metabolites transfer. However, the molecular mechanisms of the metabolites from stromal cells playing a role to the progression of cancer cells remain to be determined.

Methods: Oxidized ATM activation in stromal CAFs was assessed by western blotting and immunofluorescence. The increased glycolytic ability of CAFs was validated by measurements of OCR and ECAR and detections of glucose consumption and lactate production. Kinase assay and western blotting were performed to confirm the phosphorylation of GLUT1. The membrane location of phosphorylated GLUT1 was determined by biotin pull-down assay and immunofluorescence staining. The regulation of PKM2 through oxidized ATM was evaluated by western blots. In addition, the impact of lactate derived from hypoxic CAFs on cancer cell invasion was investigated both in vitro (transwell assays, western blots) and in vivo (orthotopic xenografts).

Findings: Hypoxia-induced oxidized ATM promotes glycolytic activity of CAFs by phosphorylating GLUT1 at S490 and increasing PKM2 expression. Moreover, lactate derived from hypoxic CAFs, acting as a metabolic coupling between CAFs and breast cancer cells, promotes breast cancer cell invasion by activating the TGFβ1/p38 MAPK/MMP2/9 signaling axis and fueling the mitochondrial activity in cancer cells.

Interpretation: Our work shows that oxidized ATM-mediated glycolysis enhancement in hypoxic stromal fibroblasts plays an essential role in cancer cell invasion and metastasis and may implicate oxidized ATM as a target for breast tumor treatment. FUND: This research was supported by National Natural Science Foundation of China.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6442874PMC
http://dx.doi.org/10.1016/j.ebiom.2019.02.025DOI Listing

Publication Analysis

Top Keywords

oxidized atm
24
cancer cells
12
cancer cell
12
cell invasion
12
cafs
10
oxidized
8
oxidized atm-mediated
8
atm-mediated glycolysis
8
glycolysis enhancement
8
cancer-associated fibroblasts
8

Similar Publications

The possibility of using an oxygen-nitrous oxide mixture for prolonged hypothermic preservation of rat heart for 24 hours was investigated. A comparative analysis of restoration of functional activity of hearts in the groups of 24-hour preservation at +4°C with different gases (O, N) and gas mixtures (CO+O, NO+O, N+O, NO+N) was carried out. It was shown that the presence of oxygen in the gas mixture was the key factor for heart preservation.

View Article and Find Full Text PDF

DC. Regulates Vascular Smooth Muscle Cell Proliferation by Modulating -GlcNAc and MOF Expression.

Prev Nutr Food Sci

December 2024

Aging and Metabolism Research Group, Food Functionality Research, Korea Food Research Institute, Wanju 55365, Korea.

Vascular smooth muscle cells (VSMCs) undergo metabolic pathway transitions, including aerobic glycolysis, fatty acid oxidation, and amino acid metabolism, which are important for their function. Metabolic dysfunction in VSMCs can lead to age-related vascular diseases. -GlcNAcylation, a nutrient-dependent posttranslational modification linked specifically to glucose metabolism, plays an important role in this context.

View Article and Find Full Text PDF

Metabolic reprogramming, malignant transformation and metastasis: Lessons from chronic lymphocytic leukaemia and prostate cancer.

Cancer Lett

January 2025

Clinical and Health Sciences, University of South Australia, Adelaide, Australia; Department of Histopathology, Trinity College Dublin, St. James's Hospital, Dublin, Ireland. Electronic address:

Metabolic reprogramming is a hallmark of cancer, crucial for malignant transformation and metastasis. Chronic lymphocytic leukaemia (CLL) and prostate cancer exhibit similar metabolic adaptations, particularly in glucose and lipid metabolism. Understanding this metabolic plasticity is crucial for identifying mechanisms contributing to metastasis.

View Article and Find Full Text PDF

Experimental and kinetic modeling study of oxidative degradation of benzene and phenol in supercritical water.

J Environ Manage

January 2025

Shaanxi Key Laboratory of New Transportation Energy and Automotive Energy Saving, School of Energy and Electrical Engineering, Chang'an University, Xi'an, Shaanxi, 710064, PR China.

Benzene and phenol are representative aromatic compounds existing commonly in wastewater. The kinetics of oxidative degradation of benzene and phenol in supercritical water have been investigated in a flow reactor at 823 K and 250 atm, with the excess oxygen ratio ranging from 0.5 to 2.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!