3-D Longitudinal Imaging of Tumor Angiogenesis in Mice in Vivo Using Ultrafast Doppler Tomography.

Ultrasound Med Biol

Inserm Accélérateur de Recherche Technologique en Ultrasons biomédicaux, Paris, France.

Published: May 2019

Angiogenesis, the formation of new vessels, is one of the key mechanisms in tumor development and an appealing target for therapy. Non-invasive, high-resolution, high-sensitivity, quantitative 3-D imaging techniques are required to correctly depict tumor heterogeneous vasculature over time. Ultrafast Doppler was recently introduced and provides an unprecedented combination of resolution, penetration depth and sensitivity without requiring any contrast agents. The technique was further extended to three dimensions with ultrafast Doppler tomography (UFD-T). In this work, UFD-T was applied to the monitoring of tumor angiogenesis in vivo, providing structural and functional information at different stages of development. UFD-T volume renderings revealed that our murine model's vasculature stems from pre-existing vessels and sprouts to perfuse the whole volume as the tumor grows until a critical size is reached. Then, as the network becomes insufficient, the tumor core is no longer irrigated because the vasculature is concentrated mainly in the periphery. In addition to spatial distribution and growth patterns, UFD-T allowed a quantitative analysis of vessel size and length, revealing that the diameter distribution of vessels remained relatively constant throughout tumor growth. The network is dominated by small vessels at all stages of tumor development, with more than 74% of the vessels less than 200 µm in diameter. This study also found that cumulative vessel length is more closely related to tumor radius than volume, indicating that the vascularization becomes insufficient when a critical mass is reached. UFD-T was also compared with dynamic contrast-enhanced ultrasound and found to provide complementary information regarding the link between structure and perfusion. In conclusion, UFD-T is capable of in vivo quantitative assessment of the development of tumor vasculature (vessels with blood speed >1 mm/s [sensitivity limit] assessed with a resolution limit of 80 µm) in 3 dimensions. The technique has very interesting potential as a tool for treatment monitoring, response assessment and treatment planning for optimal drug efficiency.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ultrasmedbio.2018.12.010DOI Listing

Publication Analysis

Top Keywords

ultrafast doppler
12
tumor
10
tumor angiogenesis
8
doppler tomography
8
tumor development
8
vessels
6
ufd-t
6
3-d longitudinal
4
longitudinal imaging
4
imaging tumor
4

Similar Publications

Background And Objective: The integration of ultrafast Doppler imaging with singular value decomposition clutter filtering has demonstrated notable enhancements in flow measurement and Doppler sensitivity, surpassing conventional Doppler techniques. However, in the context of transthoracic coronary flow imaging, additional challenges arise due to factors such as the utilization of unfocused diverging waves, constraints in spatial and temporal resolution for achieving deep penetration, and rapid tissue motion. These challenges pose difficulties for ultrafast Doppler imaging and singular value decomposition in determining optimal tissue-blood (TB) and blood-noise (BN) thresholds, thereby limiting their ability to deliver high-contrast Doppler images.

View Article and Find Full Text PDF

While immunotherapy shows great promise in patients with triple negative breast cancer, many will not respond to treatment. Radiotherapy has the potential to prime the tumor-immune microenvironment for immunotherapy. However, predicting response is difficult due to tumor heterogeneity across patients, which necessitates personalized medicine strategies that incorporate tumor tracking into the therapeutic approach.

View Article and Find Full Text PDF

Background: Microvascular ultrasound imaging techniques such as Angio PLanewave UltraSensitive (Angio-PL.U.S.

View Article and Find Full Text PDF

Cerebral arterial and venous flow (A/V) classification is a key parameter for understanding dynamic changes in neonatal brain perfusion. Currently, transfontanellar ultrasound Doppler imaging is the reference clinical technique able to discriminate between A/V using vascular indices such as resistivity index (RI) or pulsatility index (PI). However, under conditions of slow arterial and venular flow, small signal fluctuations can lead to potential misclassifications of vessels.

View Article and Find Full Text PDF

Aim: Renal artery disease is the most common cause of secondary hypertension worldwide. B-mode and Doppler ultrasound are considered the modalities of choice for the imaging of the renal arteries. However, an adequate examination can be plagued by difficulties in patients with unfavorable anatomy.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!