Spermatogenesis is a complicated process that is tightly regulated by the well-coordinated expression of a series of genes in the testes. Ankyrin repeat domain-containing protein 49 (ANKRD49), an evolutionarily conserved protein highly expressed in the testes, is mainly found in spermatogonia, spermatocytes, and round spermatids. However, the exact function of ANKRD49 in spermatogenesis has remained elusive. In this study, we sought to investigate the role of ANKRD49 in apoptosis and determine the mechanism underlying this process in male germ cell-derived GC-1 cells. Nuclear staining with Hoechst 33258 and annexin V-FITC/PI, as well as analysis of caspase 3 activity, mitochondrial membrane potential, and apoptotic protein expression, showed that etoposide-induced apoptosis was attenuated by ANKRD49 overexpression but promoted by RNA interference-induced ANKRD49 knockdown. Furthermore, assessment of the levels of caspase 9, caspase 8, and proteins of the Bcl-2 family revealed ANKRD49 to be involved in an intrinsic apoptosis pathway. Examination of the subcellular distribution of the NF-κB p65 subunit after treatment with an NF-κB signaling inhibitor or p65 small interfering RNA demonstrated that ANKRD49 modulated etoposide-induced GC-1 cell apoptosis via the NF-κB pathway. Taken together, these results suggest that ANKRD49 plays an important role in reducing intrinsic apoptosis of GC-1 cells by modulating the NF-κB signaling pathway.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s11010-019-03508-9DOI Listing

Publication Analysis

Top Keywords

intrinsic apoptosis
12
gc-1 cells
12
nf-κb signaling
12
ankrd49
9
apoptosis gc-1
8
cells modulating
8
modulating nf-κb
8
apoptosis
6
nf-κb
5
ankrd49 inhibits
4

Similar Publications

Prostate cancer represents the predominant malignant neoplasm observed in the male population and ranks second in terms of mortality attributable to malignant neoplasm among men. Decursinol angelate (DA), derived from the plant Nakai (AGN), has demonstrated anti-cancer effectiveness through the induction of intrinsic and extrinsic apoptosis pathways, inhibition of cancer cell proliferation, having anti- neovascularization, anti-inflammatory anti-oxidative activities and stimulating the immune process. The aim of this study was to determine the IC50 dose of DA on human prostate cancer cell line PC-3, as well as to assess its effects on cell viability and apoptosis.

View Article and Find Full Text PDF

INTERACTION OF SMALL HEAT SHOCK PROTEINS WITH BAG3.

Biochimie

January 2025

Department of Biochemistry, School of Biology, M.V. Lomonosov Moscow State University; Department of Biochemistry and Regenerative Biomedicine Faculty of Basic Medicine, M.V. Lomonosov Moscow State University. Electronic address:

BAG3 is a universal adapter protein involved in various cellular processes, including the regulation of apoptosis, chaperone-assisted selective autophagy, and heat shock protein function. The interaction between small heat shock proteins (sHsps) and their α-crystallin domains (Acds) with full-length BAG3 protein and its IPV domain was analyzed using size-exclusion chromatography, native gel electrophoresis, and chemical cross-linking. HspB7 and the 3D mutant of HspB1 (which mimics phosphorylation) showed no interaction, HspB6 weakly interacted, and HspB8 strongly interacted with full-length BAG3.

View Article and Find Full Text PDF

Mitochondria and NLRP3: To die or inflame.

Immunity

January 2025

Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA. Electronic address:

Mitochondria play critical roles in intrinsic apoptosis and NLRP3 inflammasome activation, but how these processes are interconnected remains unclear. In this issue of Immunity, Saller et al. unveiled the complexity of NLRP3 activators, highlighting mitochondria's roles in switching apoptosis to NLRP3 inflammasome activation.

View Article and Find Full Text PDF

Inducing apoptosis in acute myeloid leukemia; mechanisms and limitations.

Heliyon

January 2025

Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), Tehran, Iran.

Acute myeloid leukemia is the expansion of leukemic stem cells which might originate from a stem cell or a progenitor which has acquired self-renewal capacity. An aggregation of leukemic blasts in bone marrow, peripheral blood, and extramedullary tissue will result in acute myeloid leukemia. The main difficulty in treating acute myeloid leukemia is multidrug resistance, leading to treatment failure.

View Article and Find Full Text PDF

Structural Modifications and Prospects of Histone Deacetylase (HDAC) Inhibitors in Cancer.

Curr Med Chem

January 2025

Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, 646000, China.

Histone deacetylases (HDACs) play a crucial role in the regulation of cancer progression and have emerged as key targets for antitumor therapy. Histone Deacetylase Inhibitors (HDACis) effectively suppress tumor cell proliferation, induce apoptosis, and cause cell cycle arrest, demonstrating broad-spectrum antitumor activity. This article primarily focuses on enhancing the selectivity of HDACis through structural modification using natural compounds.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!