Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Astrocyte is considered to be a type of passive supportive cells that preserves neuronal activity and survival. The dysfunction of astrocytes is involved in the pathological processes of major depression. Recent studies implicate sigma-1 receptors as putative therapeutic targets for current available antidepressant drugs. However, it is absent of direct evidences whether sigma-1 receptor could promote activation of astrocyte. In the present study, we took advantage of primary astrocyte culture and a highly selective agonist of sigma-1 receptor, (+)SKF-10047 to determine the effect of sigma-1 receptor on Brdu (bromodeoxyuridine) labeling positive cells, migration as well as GFAP (glial fibrillary acidic protein) expression of astrocyte. The results showed that (+)SKF-10047 notably increased the number of Brdu labeling positive cells, migration, and the expression of GFAP in primary astrocytes, which were blocked by antagonist of sigma-1 receptor. Moreover, we also found that (+)SKF-10047 increased the phosphorylation of ERK1/2 (extracellular signal-regulated kinases 1/2) and GSK3β (glycogen synthase kinase 3β) (ser 9) in the primary astrocytes. In addition, pharmacological inhibition of ERK1/2 and GSK3β (ser 9) abolished sigma-1 receptor-promoted activation of astrocyte. Therefore, sigma-1 receptor could be considerate as a new pattern for modulating astrocytic function might emerge as therapeutic strategies.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s00210-019-01632-3 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!