Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
This paper describes a low-cost reversed-phase sequential injection chromatography method for the determination of glyphosate and aminomethylphosphonic acid in environmental samples. The method is based on the pre-column conversion of glyphosate to glycine by hypochlorite, followed by reaction with o-phthaldialdehyde in presence of 2-mercaptoethanol in borate buffer (pH 9.5) to produce the fluorescent 1-(2'-hydroxyethylthio)-2-N-alkylisoindole. In addition to producing detectable fluorescent indoles, the pre-column derivatization also decreases the polarity of the analytes, favoring their retention on a C monolithic column. The isocratic reversed-phase chromatography enabled the separation of both glyphosate and aminomethylphosphonic acid derivatives from polar compounds such as organic acids, humic substances, and carbohydrates which are commonly found in waters and soil extracts. This separation minimizes the laborious sample preparation procedures prior to the analysis. The linear response was observed for concentrations between 0.10 and 12.8 μM. The limits of detection and quantification were 0.03 and 0.10 μM (glyphosate), and 0.015 and 0.050 μM (aminomethylphosphonic acid). At the 0.10 μM concentration level, the relative standard deviations were 21 and 25% for aminomethylphosphonic acid and glyphosate, respectively (n = 5). Recoveries between 80 and 120% were found in the determination of glyphosate and aminomethylphosphonic acid in spiked lake waters (0.80 to 6.4 μM). The method was applied in the determination of kinetic and thermodynamic parameters related to the adsorption of glyphosate on two horizons of an Alfisol from the Paraná State in South Brazil.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s00216-019-01672-x | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!