One of the most promising clinical applications of Electrical Impedance Tomography (EIT) is real-time monitoring of lung function in ambulatory or ICU due to the rapid, non-invasive and non-ionizing nature of the measurements. However, to move this modality into routine clinical use will, as a minimum, require the development of realistic and computationally efficient forward and inverse meshes of the thorax and the lungs alongside mechanisms to extract quantitative information from the resulting reconstructed images. The latter will allow for reduction of artefacts and better localization of conductivity changes within the image domain. This research aims to contribute towards this goal, by introducing a pipeline for the generation of anatomically accurate meshes for EIT forward and inverse models. We achieve this by the segmentation of realistic volumetric data from thoracic CT volumes, and subsequent tessellation. Mesh quality is assessed in terms of aspect ratio, dihedral and face angles. Moreover, the generated meshes are fused with currently available EIT software, with a novel electrode placement method, to show the practical application of the generated meshes. Results show that anatomically constrained unstructured meshes can be generated, conforming to realistic anatomical geometry, and performing well in EIT numerical computations. Such realistic computational models will further enhance the performance of EIT reconstruction algorithms, thus offering significant benefits to clinical EIT lung imaging.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.compbiomed.2019.02.007 | DOI Listing |
Stress Health
February 2025
Department of Psychology, The University of British Columbia, Vancouver, Canada.
The Hamas-led terrorist attacks in Israel on October 7, 2023, were an inflection point that spurred a global rise in antisemitism. College and university campuses were particularly affected. Given the adverse impacts of prejudice and discrimination for mental health and the dearth of research on psychosocial effects of antisemitism, examining stress, coping, and mental health among Jewish students within this context is crucial.
View Article and Find Full Text PDFMedicine (Baltimore)
January 2025
Department of Urology, Mindong Hospital Affiliated to Fujian Medical University, Fuan, Fujian, China.
Previous studies have suggested an association between autoimmune diseases (AIDs) and the risk of prostate cancer (PCa). However, the causal relationship between AID and PCa remained unclear. The purpose of this study was to investigate the causal association between 3 common AIDs, including rheumatoid arthritis (RA), systemic lupus erythematosus (SLE), and ankylosing spondylitis (AS), and the risk of PCa.
View Article and Find Full Text PDFPhys Med Biol
January 2025
North China Electric Power University - Baoding Campus, North China Electric Power University, Baoding, Hebei Province, P.R.China, Baoding, Hebei, 071003, CHINA.
Objective: The optical absorption properties of biological tissues in photoacoustic tomography are typically quantified by inverting acoustic measurements. Conventional approaches to solving the inverse problem of forward optical models often involve iterative optimization. However, these methods are hindered by several challenges, including high computational demands, the need for regularization, and sensitivity to both the accuracy of the forward model and the completeness of the measurement data.
View Article and Find Full Text PDFSensors (Basel)
December 2024
Department of Mechanical Engineering, Brigham Young University, Provo, UT 84602, USA.
Flexible high-deflection strain gauges have been demonstrated to be cost-effective and accessible sensors for capturing human biomechanical deformations. However, the interpretation of these sensors is notably more complex compared to conventional strain gauges, particularly during dynamic motion. In addition to the non-linear viscoelastic behavior of the strain gauge material itself, the dynamic response of the sensors is even more difficult to capture due to spikes in the resistance during strain path changes.
View Article and Find Full Text PDFNeuroimage
January 2025
Dept. of Electrical and Computer Engineering, Worcester Polytechnic Institute, Worcester, MA, USA.
A fast BEM (boundary element method) based approach is developed to solve an EEG/MEG forward problem for a modern high-resolution head model. The method utilizes a charge-based BEM accelerated by the fast multipole method (BEM-FMM) with an adaptive mesh pre-refinement method (called b-refinement) close to the singular dipole source(s). No costly matrix-filling or direct solution steps typical for the standard BEM are required; the method generates on-skin voltages as well as MEG magnetic fields for high-resolution head models within 90 s after initial model assembly using a regular workstation.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!