Rational design of NIR fluorescence probes for sensitive detection of viscosity in living cells.

Spectrochim Acta A Mol Biomol Spectrosc

Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Jiangsu National Synergetic In-novation Center for Advanced Materials (SICAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing 211816, PR China; Shaanxi Institute of Flexible Electronics (SIFE), Northwestern Polytechnical University (NPU), 127 West Youyi Road, Xi'an 710072, PR China. Electronic address:

Published: May 2019

Developing near-infrared (NIR) fluorescence probes for detection of intracellular viscosity is still sufficiently challenging. In this work, three kinds of D-A-D type naphthyl and 2,1,3‑benzoxadiazol hybrid NIR dyes functionalized with amino (NY1), N‑methylamino (NY2) and N,N‑dimethylamino (NY3) groups for intracellular micro-viscosity detection were designed and synthesized. All the probes exhibited very weak NIR emission in low viscosity environment and obvious fluorescence enhancement with the increased viscosity. Different substituent groups had a high impact on the photophysical properties and response sensitive of the probes to viscosity. The structure-property relationships were systematic investigated. The results showed that stronger electron-donating ability and larger steric effect of N,N‑dimethylamino led to a narrower energy gap and more sensitive to viscosity environment. Therefore, NY3 exhibited higher signal noise ratio for viscosity detection and was successfully applied for imaging the changes of intracellular micro-viscosity. This work provides an efficient way to design powerful NIR fluorescence probes for viscosity detection.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.saa.2019.02.068DOI Listing

Publication Analysis

Top Keywords

nir fluorescence
12
fluorescence probes
12
viscosity
8
intracellular micro-viscosity
8
viscosity environment
8
probes viscosity
8
viscosity detection
8
nir
5
probes
5
detection
5

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!