Many joint actions require task partners to temporally coordinate actions that follow different spatial patterns. This creates the need to find trade-offs between temporal coordination and spatial alignment. To study coordination under incongruent spatial and temporal demands, we devised a novel coordination task that required task partners to synchronize their actions while tracing different shapes that implied conflicting velocity profiles. In three experiments, we investigated whether coordination under incongruent demands is best achieved through mutually coupled predictions or through a clear role distribution with only one task partner adjusting to the other. Participants solved the task of trading off spatial and temporal coordination demands equally well when mutually perceiving each other's actions without any role distribution, and when acting in a leader-follower configuration where the leader was unable to see the follower's actions. Coordination was significantly worse when task partners who had been assigned roles could see each other's actions. These findings make three contributions to our understanding of coordination mechanisms in joint action. First, they show that mutual prediction facilitates coordination under incongruent demands, demonstrating the importance of coupled predictive models in a wide range of coordination contexts. Second, they show that mutual alignment of velocity profiles in the absence of a leader-follower dynamic is more wide-spread than previously thought. Finally, they show that role distribution can result in equally effective coordination as mutual prediction without role assignment, provided that the role distribution is not arbitrarily imposed but determined by (lack of) perceptual access to a partner's actions.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6446186 | PMC |
http://dx.doi.org/10.1016/j.cognition.2019.02.006 | DOI Listing |
Environ Microbiol
January 2025
Institute of Microbiology and Dahlem Centre of Plant Sciences, Department of Biology, Chemistry, Pharmacy, Freie Universität Berlin, Berlin, Germany.
The leaf surface, known as the phylloplane, presents an oligotrophic and heterogeneous environment due to its topography and uneven distribution of resources. Although it is a challenging environment, leaves support abundant bacterial communities that are spatially structured. However, the factors influencing these spatial distribution patterns are not well understood.
View Article and Find Full Text PDFJ Sports Sci
January 2025
Institut Nacional d'Educació Física de Catalunya (INEFC), Universitat de Lleida (UdL), Zaragoza, Spain.
This study investigated the association between shoulder biomechanics, anthropometric variables and isometric and dynamic forces in the pullover exercise and throwing speed in professional water polo players. 30 elite male players (age: 20 ± 2.7 years; height: 180 ± 5.
View Article and Find Full Text PDFMol Ecol
January 2025
Department of Functional Biology, Faculty of Medicine, University of Oviedo, Oviedo, Spain.
Hybridization is relatively common between closely related species that share part of their distribution. Understanding its dynamics is important both for conservation purposes and to determine its role as an evolutionary mechanism. Here we have studied the case of black hakes (Merluccius polli and Merluccius senegalensis) in its contact zone.
View Article and Find Full Text PDFSoc Stud Sci
January 2025
King's College London, London, UK.
Cyber threat intelligence firms play a powerful role in producing knowledge, uncertainty, and ignorance about threats to organizations and governments globally. Drawing on historical and ethnographic methods, we show how cyber threat intelligence analysts navigate distinctive types of uncertainty as they transform digital traces into marketable products and services. We make two related contributions and arguments.
View Article and Find Full Text PDFElife
January 2025
Cell Biology, Hospital for Sick Children, Toronto, Canada.
Proliferating animal cells maintain a stable size distribution over generations despite fluctuations in cell growth and division size. Previously, we showed that cell size control involves both cell size checkpoints, which delay cell cycle progression in small cells, and size-dependent regulation of mass accumulation rates (Ginzberg et al., 2018).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!