Long-term generation of antiPCSK9 antibody using a nanoliposome-based vaccine delivery system.

Atherosclerosis

Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Neurogenic Inflammation Research Center, Mashhad University of Medical Sciences, Mashhad, Iran; School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran. Electronic address:

Published: April 2019

Background And Aims: Proprotein convertase subtilisin kexin type 9 (PCSK9) is a liver secretory enzyme that controls plasma low-density lipoprotein cholesterol (LDL-C) levels through modulation of LDL receptor (LDLR). Inhibition of PCSK9 using monoclonal antibodies (mAbs) can efficiently lower plasma LDL-C. However, the relatively short half-life of mAbs necessitates frequent passive immunization, which is costly. These limitations can be circumvented by active immunization. Here, we evaluated the long-term antiPCSK9 antibody generation in BALB/c mice vaccinated with a nanoliposomal PCSK9-specific active vaccine.

Methods: Negatively charged nanoliposomes were used as a vaccine delivery system and prepared via lipid-film hydration method. We constructed a peptide vaccine termed Immunogenic Fused PCSK9-Tetanus (IFPT) by linking a short PCSK9 peptide (as B cell epitope) to a tetanus peptide (as T cell epitope). The IFPT peptide was conjugated to the surface of nanoliposome carriers using a DSPE-PEG- Maleimide (1,2-distearoyl-sn-glycero-3-phosphoethanolamine-N-[maleimide(PEG)-2000]) linker. Nanoliposomal IFPT (L-IFPT) construct was formulated with alum vaccine adjuvant (L-IFPTA). To evaluate induction of antiPCSK9 antibody in vivo, BALB/c mice were subcutaneously inoculated four times in bi-weekly intervals with prepared vaccine formulations, including L-IFPT, L-IFPTA, IFPTA, IFPT, and empty liposomes as negative control. The long-term efficacy of antiPCSK9 antibodies was evaluated over 48 weeks after prime inoculation. Specificity of generated antiPCSK9 antibodies was assessed using ELISA method. To evaluate immunogenic safety, production of IL-4 and IFN-γ, and population of CD8 and CD4 T cells in splenic cells isolated from the vaccinated mice were analyzed.

Results: The L-IFPTA vaccine was found to elicit the highest IgG antibody response against PCSK9 peptide in the vaccinated mice, when compared with the other vaccine formulations. Antibody titer analyses over 48 weeks post-prime vaccination revealed that the L-IFPTA vaccine was able to stimulate a long-lasting humoral immune response against PCSK9 peptide, and thereby decrease plasma PCSK9. Generated antibodies could specifically target PCSK9 and thereby inhibit PCSK9-LDLR interaction. Analysis of splenic cells showed that the population of anti-inflammatory CD4 Th2 cells and production and secretion of IL-4 cytokine were increased in mice vaccinated with the L-IFPTA vaccine, while population of inflammatory CD4 Th1 cell and cytotoxic CD8 T cells as well as production and secretion of IFN-γ were not altered.

Conclusions: The results indicate efficient activity of the tested nanoliposomal construct (L-IFPTA) to induce humoral immune response against PCSK9 in BALB/c mice. L-IFPTA vaccine can induce immunogenic-safe and long-term generation of antiPCSK9 antibodies in BALB/c mice.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.atherosclerosis.2019.02.001DOI Listing

Publication Analysis

Top Keywords

balb/c mice
16
l-ifpta vaccine
16
antipcsk9 antibody
12
pcsk9 peptide
12
antipcsk9 antibodies
12
response pcsk9
12
vaccine
10
long-term generation
8
generation antipcsk9
8
vaccine delivery
8

Similar Publications

This study aimed to evaluate the therapeutic efficacy of camellia oil on 2,4-dinitrochlorobenzene (DNCB)-induced atopic dermatitis (AD) in mice, as well as its effect on the expression of skin-barrier-related proteins. A mouse model of AD was created via topical application of DNCB; subsequently, the animals were randomly divided into four groups: the blank control (Control), model (Model), moisturizing cream (Moisturizer), and camellia oil (Camellia) groups. The Camellia group received camellia oil, whereas the Moisturizer group was treated with moisturizing cream, as a positive control.

View Article and Find Full Text PDF

A Three-agent Regimen for Triple Negative Breast Cancer Treatment.

Recent Pat Anticancer Drug Discov

January 2025

Department of Medical Oncology, Affiliated Hospital of Inner Mongolia Medical University, NO1 Tongdao Northern Road, Hohhot, 010050, China.

Background: Triple-negative breast cancer (TNBC) has a poor prognosis with current treatment options. Novel therapeutic strategies are urgently needed to enhance treatment outcomes for TNBC.

Objective: This study evaluated the efficacy of a three-agent regimen compared to existing treatment regimens in a TNBC mouse model, and elucidated its potential mechanisms of action.

View Article and Find Full Text PDF

Introduction: Animal influenza viruses pose a danger to the general public. Eurasian avian-like H1N1 (EA H1N1) viruses have recently infected humans in several different countries and are often found in pigs in China, indicating that they have the potential to cause a pandemic. Therefore, there is an urgent need to develop a potent vaccine against EA H1N1.

View Article and Find Full Text PDF

Background: Bladder cancer (BC) is a malignant tumor. Methyltransferase-like 7B (MEETL7B) is a methyltransferase and its role in BC has not yet been revealed.

Method: Stable METTL7B knockdown or overexpression were achieved by lentiviral transduction in SW780 and TCCSUP cell lines.

View Article and Find Full Text PDF

Streptococcus suis (S. suis) is a major pathogen in swine and poses a potential zoonotic threat, which may cause serious diseases. Many toxin-antitoxin (TA) systems have been discovered in S.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!