Increased metabolic activity and hysteretic enhanced GABA receptor binding in a rat model of salicylate-induced tinnitus.

Behav Brain Res

Department of Otorhinolaryngology Head and Neck Surgery, Shanghai Ninth People's Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China; Laboratoryof Auditory Neuroscience, Ear Institute, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Shanghai Key Laboratory of Translational Medicine on Ear and Nose Diseases, Shanghai, China. Electronic address:

Published: May 2019

Tinnitus is relevant to neural hyperactivity in the central nervous system (CNS). Normal quantity and functioning of the γ-aminobutyric acid (GABA) receptor are crucial for maintaining the balance between excitation and inhibition in the brain. In this study, we applied a rat model of tinnitus via long-term salicylate administration. The combination of the gap pre-pulse inhibition of acoustic startle (GPIAS) and pre-pulse inhibition (PPI) tests were used to detect tinnitus-like behavior, and rats receiving 7 or 14 consecutive days of salicylate administration showed evidence of tinnitus. After positron emission tomography (PET) scan, we found that the metabolic activity was increased after salicylate treatment followed by enhanced GABA receptor binding with cessation of salicylate administration in the auditory cortex (AC), medial prefrontal cortex (mPFC), hippocampus (HP), cingulate cortex (CiC) and insular (InC). The inferior colliculus (IC) showed an elevated metabolic activity with no change in the GABA receptor binding. All the alterations returned to baseline several days after cessation of salicylate treatment despite a mismatch between the time-course of them. By contrast, we found alterations in neither the metabolic activity nor the GABA receptor binding in the amygdala (AMY) and cerebellum (CRB). These findings indicate that enhanced neural activity in the auditory and limbic system may contribute to the development of tinnitus, while the hysteretic increase of GABA receptor binding in specific areas of the CNS may be a compensation for hyperactivity, which may be involved in tinnitus relieving.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.bbr.2019.02.037DOI Listing

Publication Analysis

Top Keywords

gaba receptor
24
receptor binding
20
metabolic activity
16
salicylate administration
12
enhanced gaba
8
rat model
8
pre-pulse inhibition
8
salicylate treatment
8
cessation salicylate
8
gaba
6

Similar Publications

Background And Aim: Human dental pulp stem cells (hDPSCs) constitute a promising alternative for central nervous system (CNS) cell therapy. Unlike other human stem cells, hDPSCs can be differentiated, without genetic modification, to neural cells that secrete neuroprotective factors. However, a better understanding of their real capacity to give rise to functional neurons and integrate into synaptic networks is still needed.

View Article and Find Full Text PDF

Alpha6-containing GABA receptors - Novel targets for the treatment of schizophrenia.

Pharmacol Res

January 2025

Center for Brain Research, Department of Molecular Neurosciences, Medical University Vienna, Vienna, Austria. Electronic address:

α6-containing GABA receptors (α6GABARs) are strongly expressed in cerebellar granule cells and are of central importance for cerebellar functions. The cerebellum not only is involved in regulation of motor activity, but also in regulation of thought, cognition, emotion, language, and social behavior. Activation of α6GABARs enhances the precision of sensory inputs, enables rapid and coordinated movement and adequate responses to the environment, and protects the brain from information overflow.

View Article and Find Full Text PDF

Dopaminergic modulation of propofol-induced activation in VLPO neurons: the role of D1 receptors in sleep-promoting neural circuits.

Front Neurosci

January 2025

The Key Laboratory of Anesthesia and Organ Protection, The Key Laboratory of Brain Science, Zunyi Medical University, Zunyi, China.

Background: The ventrolateral preoptic nucleus (VLPO) is a crucial regulator of sleep, and its neurons are implicated in both sleep-wake regulation and anesthesia-induced loss of consciousness. Propofol (PRO), a widely used intravenous anesthetic, modulates the activity of VLPO neurons, but the underlying mechanisms, particularly the role of dopaminergic receptors, remain unclear.

Objective: This study aimed to investigate the effects of PRO on NA (-) neurons in the VLPO and to determine the involvement of D1 and D2 dopaminergic receptors in mediating these effects.

View Article and Find Full Text PDF

Type A GABA (γ-aminobutyric acid) receptors (GABA receptors) mediate most fast inhibitory signalling in the brain and are targets for drugs that treat epilepsy, anxiety, depression and insomnia and for anaesthetics. These receptors comprise a complex array of 19 related subunits, which form pentameric ligand-gated ion channels. The composition and structure of native GABA receptors in the human brain have been inferred from subunit localization in tissue, functional measurements and structural analysis from recombinant expression and in mice.

View Article and Find Full Text PDF

Action of GABAB receptor on local network oscillation in somatosensory cortex of oral part: focusing on NMDA receptor.

J Physiol Sci

January 2025

Department of Molecular Oral Physiology, Institute of Biomedical Sciences, Tokushima University Graduate School, 3-18-15 Kuramoto, 770-8504, Tokushima, Japan. Electronic address:

The balance of activity between glutamatergic and GABAergic networks is particularly important for oscillatory neural activities in the brain. Here, we investigated the roles of GABA receptors in network oscillation in the oral somatosensory cortex (OSC), focusing on NMDA receptors. Neural oscillation at the frequency of 8-10 Hz was elicited in rat brain slices after caffeine application.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!