A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Uricase grafted nanoconducting matrix based electrochemical biosensor for ultrafast uric acid detection in human serum samples. | LitMetric

Uricase grafted nanoconducting matrix based electrochemical biosensor for ultrafast uric acid detection in human serum samples.

Int J Biol Macromol

Academy of Scientific and Innovative Research (AcSIR), CSIR - National Physical Laboratory (Campus), New Delhi 110012, India; CSIR - National Physical Laboratory, New Delhi 110012, India. Electronic address:

Published: June 2019

Gold nanoparticles decorated graphene oxide (Au-rGO) nanocomposite thin films with enhanced electro-active characteristics were prepared and covalently immobilized with uricase (UOx) enzyme for sensitive and selective detection of uric acid (UA). Differential pulse voltammetry (DPV) studies revealed rapid response of fabricated electrode towards UA at low potential (0.228 V) in a wide concentration range of 50-800 μM with a sensitivity of 86.62 ± 0.19 μA mM and very low detection limit of 7.32 ± 0.21 μM. The obtained Michaelis-Menten constant (k) value of 51.75 μM signifies high enzyme kinetics at electrode surface with UA. The developed biosensor was successfully applied to detect UA in human serum samples. Interferences due to components present in the real matrix were evaluated and UA determination in mixed sample was also performed. The fabricated UOx/Au-rGO/ITO biosensor demonstrated high reproducibility and a shelf-life of 6 months indicating the promising future of Au-rGO nanocomposite as an efficient transducer matrix for biosensing applications. The fast response time (1.0 ± 0.6 s) and improved sensor performance is attributed to the synergistic electronic properties of Au-nanoparticles and rGO that provided enhanced electron transfer and high electro-active species surface coverage at Au-rGO nanocomposite.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ijbiomac.2019.02.121DOI Listing

Publication Analysis

Top Keywords

au-rgo nanocomposite
12
uric acid
8
human serum
8
serum samples
8
uricase grafted
4
grafted nanoconducting
4
nanoconducting matrix
4
matrix based
4
based electrochemical
4
electrochemical biosensor
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!