A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Preparation and characterisation of a novel silk fibroin/hyaluronic acid/sodium alginate scaffold for skin repair. | LitMetric

Preparation and characterisation of a novel silk fibroin/hyaluronic acid/sodium alginate scaffold for skin repair.

Int J Biol Macromol

Key Laboratory of Biomaterials of Guangdong Higher Education Institutes, Guangdong Provincial Engineering and Technological Research Center for Drug Carrier Development, Department of Biomedical Engineering, Jinan University, Guangzhou 510632, China. Electronic address:

Published: June 2019

To mimic the natural structure of tissue extracellular matrix, a novel silk fibroin (SF)/hyaluronic acid (HA)/sodium alginate (SA) composite scaffold (92% in porosity) was prepared by freeze-drying. Fourier-transform infrared spectroscopy and Raman spectra indicated interactions among SF, HA, and SA molecules. Scanning electron microscopy showed that the prepared SF/HA/SA scaffold had soft, elastic characteristics, with an average pore diameter of 93 μm. Mechanical property, thermogravimetric analyses and degradation results indicated that the SF/HA/SA scaffold had good physical stability in body fluid and mechanical movement-related environments. Cell proliferation, morphological, and live-dead analyses showed that NIH-3T3 fibroblast cells were better able to attach, grow, and proliferate on the SF/HA/SA scaffold compared with SF, SF/HA, and SF/SA scaffolds. We evaluated the wound healing effects in a rat full-thickness burn model. The hematoxylin-eosin (H&E) and Masson's trichrome staining results from SF/HA/SA scaffold showed that improved re-epithelialization, enhanced extracellular matrix remodeling. Our findings showed that the prepared SF/HA/SA scaffold can provide a potential way as a wound dressing for skin repair.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ijbiomac.2019.02.120DOI Listing

Publication Analysis

Top Keywords

sf/ha/sa scaffold
20
novel silk
8
skin repair
8
extracellular matrix
8
prepared sf/ha/sa
8
scaffold
7
sf/ha/sa
5
preparation characterisation
4
characterisation novel
4
silk fibroin/hyaluronic
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!