AI Article Synopsis

Article Abstract

The elimination of Tuberculosis (TB) in settings with a high dual burden of active and latent TB is one of the most important public health challenges of the 21st century. India has the highest TB burden in the world and nearly 40% of the population being infected with TB. There also exist large often overlapping socially and medically vulnerable populations like the PLHIV, pediatric TB contacts, children with protein-energy malnutrition, homeless people, workers in silica industry and adults with low BMI. A significantly higher risk of progression into active tubercular disease exists in those with compromised immune or nutritional status. It is uncertain if global TB elimination targets can be achieved in the absence of aggressive LTBI treatment strategies for interrupting the chain of transmission of the disease. India hence needs to accelerate and prioritize capacity building in latent TB research. A research agenda is outlined for generating evidence towards the evolution of critical evidence-based policy for LTBI management under Indian health settings.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ijtb.2018.10.006DOI Listing

Publication Analysis

Top Keywords

achieving elimination
4
elimination india
4
india role
4
role latent
4
latent management
4
management elimination
4
elimination tuberculosis
4
tuberculosis settings
4
settings high
4
high dual
4

Similar Publications

A carbon nanotube (CNT) composite is an effective method to improve the thermoelectricity of materials. However, the depletion layer between the CNT and thermoelectric (TE) material always decreases the contribution of CNT to the conductivity of the TE material. It is important to eliminate the depletion layer for improving the TE properties.

View Article and Find Full Text PDF

Current understanding of the histology of the dermoskeleton of tetrapods comes from fossilized and recent remains of skulls, osteoderms, carapace, plastron and other postcranial material which were always investigated using linear cross polarized light (LCPL) microscopy. The pectoral girdle of vast majority of non-amniote tetrapods, including temnospondyls evolved large ventrally located dermal bones- the interclavicle and a pair of clavicles. Despite that, there is a lack of information about the bone tissue structure from these postcranial dermal bones.

View Article and Find Full Text PDF

Engineering Covalent Aptamer Chimeras for Enhanced Autophagic Degradation of Membrane Proteins.

Angew Chem Int Ed Engl

January 2025

Nanjing University, State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, CHINA.

Targeted degradation of membrane proteins represents an attractive strategy for eliminating pathogenesis-related proteins. Aptamer-based chimeras hold great promise as membrane protein degraders, however, their degradation efficacy is often hindered by the limited structural stability and the risk of off-target effects due to the non-covalent interaction with target proteins. We here report the first design of a covalent aptamer-based autophagosome-tethering chimera (CApTEC) for the enhanced autophagic degradation of cell-surface proteins, including transferrin receptor 1 (TfR1) and nucleolin (NCL).

View Article and Find Full Text PDF

Murine neonatal neutrophil depletion strategies have problems achieving deep neutrophil clearance and accurate residual neutrophil fraction detection. An isotype switch method can achieve profound neutrophil clearance using a combination of anti-Ly6G and anti-rat κ Ig light chain antibodies in adult C57Bl/6 mice, proven by extra- and intracellular Ly6G detection by flow cytometry. We adapted this technique to neonatal mice, testing four neutrophil depletion strategies in the peripheral circulation, bone marrow, and spleen.

View Article and Find Full Text PDF

Controlling reaction outcomes through external influences is a central goal in chemistry. Vibrational coupling between molecular vibrations and cavity modes is rapidly emerging as a distinct strategy compared with conventional thermochemical and photochemical methods; however, insight into the fundamental mechanisms remains limited. Here we investigate how vibrational weak and strong coupling in plasmonic nanocavities modifies the thermal dehydration of copper sulfate pentahydrate.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!