Modelling the dispersion of radionuclides in dust from a landform covered by low uranium grade waste rock.

J Environ Radioact

Australian Nuclear Science and Technology Organisation (ANSTO), Locked Bag 2001, Kirrawee DC, NSW, 2232, Australia.

Published: June 2019

The dispersion of radionuclides in dust and inhalation dose rates to the public from the planned remediation of the Ranger uranium mine in the wet-dry tropics of Australia was modelled using RESRAD-OFFSITE. Dust inhalation dose rates were predicted to be highest on the remediated site and decrease with an approximate inverse square to inverse cubic dependence with distance from the site. The annual dose above natural background to a hypothetical individual permanently occupying the remediated site (representing the worst case scenario for radionuclide in dust exposure) was estimated to be 5.3 × 10 mSv. The estimated doses from exposure to radionuclides in dust were two to three orders of magnitude lower than those from exposure to Rn. A sensitivity analysis showed that source-related and receptor-related model parameters had direct proportional influences on dust inhalation dose rates. Four transport-related model parameters (atmospheric stability class, deposition velocity of particulates, precipitation and wind speed) were also influential and generally had an increasing influence with distance from the source. The results of this study may provide general guidance to similar sites elsewhere on the relative importance of dust versus gaseous Rn transport pathways and the relative influence of dispersion modelling parameters on predicted exposures and doses.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jenvrad.2019.02.006DOI Listing

Publication Analysis

Top Keywords

radionuclides dust
12
dust inhalation
12
inhalation dose
12
dose rates
12
dispersion radionuclides
8
remediated site
8
model parameters
8
dust
7
modelling dispersion
4
dust landform
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!