Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
It is generally considered that enteric neuropathy is one of the causative factors in diabetic gastroparesis. Our previous study demonstrated that there is a loss of NOS neurons in diabetic mice. However, the underlying mechanism remains unclear. The present study was designed to clarify the relationship between neuronal P2X7R and NOS neuron damage. The effect of P2X7R on diabetes-induced gastric NOS neurons damage and its mechanism were investigated by using quantitative RT-PCR,immunofluorescence, western blot, isometric force recording, intracellular calcium ([Ca]i) measurement and whole-cell patch clamp techniques. The immunohistochemistry and western blot results showed that nNOS expression was significantly down-regulated in diabetic mice, meanwhile, electric field stimulation-induced NOS sensitive relaxation was significantly suppressed. Myenteric neurons expressed P2X7R and pannexin1, and the mRNA and protein level of P2X7R and pannexin1 were up-regulated in diabetic mice. BzATP, a P2X7R activator, evoked [Ca]i increase in Hek293 cells with heterologous expression of P2X7R (Hek293-P2X7R cells) and the same dose of ATP-induced [Ca]i was more obvious in Hek293-P2X7R cells than in Hek293 cells. Application of BzATP activated an inward current of Hek293-P2X7R in a dose dependent manner. Hek293-P2X7R but not untransfected Hek293 cells could take up of YO-PRO-1. In addition, the uptake of YO-PRO-1 by Hek293-P2X7R was blocked by oxATP, a P2X7 antagonist and CBX, a pannexin1 inhibitor. The results suggest that the P2X7R of enteric neurons may be involved in diabetes-induced NOS neuron damage via combining with pannexin-1 to form transmembrane pores which induce macromolecular substances and calcium into the cells.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.ejphar.2019.02.033 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!