AI Article Synopsis

  • Induced pluripotent stem cells (iPSCs) have advanced stem cell therapy research, but ensuring safety remains a concern, leading researchers to utilize animal models.
  • Dogs, due to their genetic and anatomical similarities to humans, are better models for studying human diseases than rodents, providing unique insights into genetic disorders.
  • The study reviews recent developments in canine embryonic stem cells (cESCs) and iPSCs, highlighting their potential for both dog and human therapies, while emphasizing a need for further exploration in canine stem cell applications.

Article Abstract

The path-breaking discovery of induced pluripotent stem cells has fuelled the scientific advancements of stem cells. Nevertheless, the need to ensure the safety of stem cell therapy at translational level is still at large, prompting scientists to use animal models which are genetically and anatomically homologous to that of humans. Dogs, being genomically and physiologically more similar to humans serve as better models in mimicking human diseases as compared to rodents. The heterogeneity in canine breeds offers an excellent opportunity to comprehend the complexities of many genetic diseases, making them exceptional tools for stem cell therapies. Various canine gene therapy models have paved the foundation for strategizing therapies for humans. But a similar progress is lacking in utilizing canine stem cells for stem cell-based therapies in both dogs and humans. This review attempts to bridge the gap, by articulating the key differences in canine pluripotency pathways, based on the recent derivation of canine embryonic stem cells (cESCs) and canine induced pluripotent stem cells (ciPSCs), thereby attempting to position dog in the reprogramming landscape. The potential clinical application of canine iPSCs also offers great hope to canine patients and might lead to significant contributions in veterinary medicine.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.yexcr.2019.01.025DOI Listing

Publication Analysis

Top Keywords

stem cells
24
pluripotent stem
12
canine
9
stem
9
induced pluripotent
8
stem cell
8
cells
6
road travelled
4
travelled efficacy
4
efficacy canine
4

Similar Publications

Background: The common drugs used for the treatment of Newly Diagnosed Multiple Myeloma (NDMM) include bortezomib and lenalidomide, but the adverse effects of lenalidomide cannot be ignored, especially when it is used in the initial therapy.

Methods: This retrospective study evaluated the efficacy and safety of a modified DVD regimen (pegylated liposomal doxorubicin, bortezomib, and dexamethasone) followed by lenalidomide in the treatment of NDMM. A total of 40 NDMM patients were treated with a reduced dose of pegylated liposomal doxorubicin (20 mg/m) on day 1, subcutaneous bortezomib (1.

View Article and Find Full Text PDF

Advances in RNA editing in hematopoiesis and associated malignancies.

Blood

January 2025

State Key Laboratory of Experimental Hematology, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College; Center for Stem Cell Medicine,, Tianjin, China.

Adenosine-to-inosine (A-to-I) RNA editing is a prevalent RNA modification essential for cell survival. The process is catalyzed by the Adenosine Deaminase Acting on RNA (ADAR) enzyme family that converts adenosines in double-stranded RNAs (dsRNAs) into inosines, which are read as guanosines during translation. Deep sequencing has helped to reveal that A-to-I editing occurs across various types of RNAs to affect their functions.

View Article and Find Full Text PDF

A single-cell atlas of the Culex tarsalis midgut during West Nile virus infection.

PLoS Pathog

January 2025

Department of Microbiology, Immunology and Pathology, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, Colorado, USA.

The mosquito midgut functions as a key interface between pathogen and vector. However, studies of midgut physiology and virus infection dynamics are scarce, and in Culex tarsalis-an extremely efficient vector of West Nile virus (WNV)-nonexistent. We performed single-cell RNA sequencing on Cx.

View Article and Find Full Text PDF

Whipworms (Trichuris spp) are ubiquitous parasites of humans and domestic and wild mammals that cause chronic disease, considerably impacting human and animal health. Egg hatching is a critical phase in the whipworm life cycle that marks the initiation of infection, with newly hatched larvae rapidly migrating to and invading host intestinal epithelial cells. Hatching is triggered by the host microbiota; however, the physical and chemical interactions between bacteria and whipworm eggs, as well as the bacterial and larval responses that result in the disintegration of the polar plug and larval eclosion, are not completely understood.

View Article and Find Full Text PDF

Purpose: Rose Bengal Photodynamic Therapy (RB-PDT) offers dual therapeutic benefits by enhancing corneal stiffness and providing antibacterial activity, presenting significant potential for patients with keratoconus complicated by keratitis. Our purpose was to assess the effect of rose bengal photodynamic therapy (RB-PDT) on the expression of pro-inflammatory cytokines and chemokines, as well as on extracellular matrix (ECM)-related molecules, in lipopolysaccharide (LPS)-induced inflammation of keratoconus human corneal fibroblasts (KC-HCFs). Additionally, the involvement of the mitogen-activated protein kinase (MAPK) and nuclear factor kappa B (NF-κB) signaling pathways which are downstream of the Toll-like receptor 4 (TLR4) pathway were examined.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!