In our previous study, the expression profile of tight junction (TJ) protein claudins (CLDNs) in human osteosarcoma (OS) cells was examined, and the data found the CLDN10 was high expressed in OS cells versus fetal osteoblast cells. Hence, we aim to determine the impacts and the molecular mechanisms of CLDN10 in the metastatic phenotype of OS. The exact expression profiles of CLDN10 and phosphorylated Janus kinase 1 (JAK1) in noncancerous bone tissues and OS tissues were detected via a western blotting and immunohistochemistry method. The OS cells with CLDN10 or JAK1 silencing was established via an RNA interference (RNAi) method, and an osteoblast cell line stably expressing CLDN10 was established via cell transfection. Then, the transfection effects and activation states of JAK1/ signal transducer and activator of transcription1 (Stat1) pathway in OS and osteoblast cells were detected via a western blotting assay. Moreover, the metastatic ability of osteoblast cells and OS cells in vitro were evaluated by means of a cell counting kit-8 (CCK8) assay, colony formation assay in soft agar, transwell assay and wound-healing experiment. The present data revealed that CLDN10 and phospho-JAK1 were up-regulated in OS tissues compared with noncancerous bone tissues. Genetic loss of CLDN10 or JAK1 inhibited the activation of the Stat1 and the malignant phenotype in OS cells. To sum up, our study suggested the CLDN10 enhanced the metastatic phenotype of OS cells via the activation of the JAK1/Stat1 signaling pathway.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6732137 | PMC |
http://dx.doi.org/10.1007/s12079-019-00509-7 | DOI Listing |
Commun Biol
January 2025
Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China.
The osteogenic differentiation of bone marrow-derived mesenchymal stem cells (BMSCs) is key for bone formation, and its imbalance leads to osteoporosis. Forkhead Box Protein G1 (FOXG1) is associated with osteogenesis, however, the effect of FOXG1 on osteogenesis of BMSCs and ovariectomy (OVX)-induced bone loss is unknown. In our study, FOXG1 expression in BMSCs increases after osteogenic induction.
View Article and Find Full Text PDFBone Res
January 2025
Department of Internal Medicine 3, Friedrich-Alexander-University Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen, Erlangen, Germany.
Osteocytes are the main cells in mineralized bone tissue. Elevated osteocyte apoptosis has been observed in lytic bone lesions of patients with multiple myeloma. However, their precise contribution to bone metastasis remains unclear.
View Article and Find Full Text PDFArch Oral Biol
December 2024
University of Brasília, Brasília, Laboratory of Oral Histopathology, Health Sciences Faculty, Brazil. Electronic address:
Objective: This in vitro study aimed to analyze the effects of ionizing radiation on immortalized human osteoblast-like cells (SaOS-2) and further assess their cellular response in co-culture with fibroblasts. These analyses, conducted in both monoculture and co-culture, are based on two theoretical models of osteoradionecrosis - the theory of hypoxia and cellular necrosis and the theory of the radiation-induced fibroatrophic process.
Design: SaOS-2 cells were exposed to ionizing radiation and evaluated for cell viability, nitric oxide (NO) production, cellular morphology, wound healing, and gene expression related to the PI3K-AKT-mTOR pathway.
Sci Adv
January 2025
Fels Cancer Institute for Personalized Medicine, Department of Cancer & Cellular Biology, Lewis Katz School of Medicine at Temple University, Philadelphia, PA 19140, USA.
Arthritis leads to bone erosion due to an imbalance between osteoclast and osteoblast function. Our prior investigations revealed that the Ca-selective ion channel, Orai1, is critical for osteoclast maturation. Here, we show that the small-molecule ELP-004 preferentially inhibits transient receptor potential canonical (TRPC) channels.
View Article and Find Full Text PDFMol Ther Nucleic Acids
March 2025
Department of Cell Biology and Genetics, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an 710061, P.R. China.
Alternative splicing (AS) plays a critical role in gene expression by generating protein diversity from single genes. This review provides an overview of the role of AS in regulating cell fate, focusing on its involvement in processes such as cell proliferation, differentiation, apoptosis, and tumorigenesis. We explore how AS influences the cell cycle, particularly its impact on key stages like G1, S, and G2/M.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!