The electroanalytical detection of the neurotransmitter dopamine (DA) in the presence of uric acid (UA) is explored for the first time using commercially procured nanodiamonds (NDs). These are electrically wired via surface modification upon screen-printed graphite macroelectrodes (SPEs). The surface coverage of the NDs on the SPEs was explored in order to optimize electroanalytical outputs to result in well-resolved signals and in low limits of detection. The (electro)analytical outputs are observed to be more sensitive than those achieved at bare (unmodified) SPEs. Such responses, previously reported in the academic literature have been reported to be electrocatalytic and have been previously attributed to the presence of surface sp carbon and oxygenated species on the surface of the NDs. However, XPS analysis reveals the commercial NDs to be solely composed of nonconductive sp carbon. The low/negligible electroconductivity of the NDs was further confirmed when ND paste electrodes were fabricated and found to exhibit no electrochemical activity. The electroanalytical enhancement, when using NDs electronically wired upon SPEs, is attributed not to the NDs themselves being electrocatalytic, as reported previously, but rather changes in mass transport where the inert NDs block the underlying electroactive SPEs and create a random array of graphite microelectrodes. The electrode was applied to simultaneous sensing of DA and UA at pH 5.5. Figures of merit include (a) low working potentials of around 0.27 and 0.35 V (vs. Ag/AgCl); and (b) detection limits of 5.7 × 10 and 8.9 × 10 M for DA and UA, respectively. Graphical abstract The electroanalytical enhancement of screen-printed electrodes modified with inert/non-conductive nanodiamonds is due to a change in mass transfer where the inert nanodiamonds facilitate the production of a random microelectrode array.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6394810PMC
http://dx.doi.org/10.1007/s00604-019-3315-yDOI Listing

Publication Analysis

Top Keywords

screen-printed electrodes
8
uric acid
8
nds
8
electroanalytical outputs
8
electroanalytical enhancement
8
surface
5
electroanalytical
5
spes
5
nanodiamond based
4
based surface
4

Similar Publications

Selective sensing of terbinafine hydrochloride using carbon-based electrodes: a green and sustainable electroanalytical method for pharmaceutical products.

Anal Methods

January 2025

ampere - Laboratório de Plataformas Eletroquímicas - Universidade Federal de Santa Catarina, Departamento de Química, 88040-900 Florianópolis, SC, Brazil.

Terbinafine hydrochloride (TBF) is a broad-spectrum antifungal used to treat various dermatophyte infections affecting the skin, hair, and nails. Accurate, sensitive, and affordable analytical methods are crucial for quantifying this drug. In this study, we report on the use of carbon-based electrodes for the electrochemical determination of TBF in pharmaceutical samples, including raw materials and tablets.

View Article and Find Full Text PDF

Electrodes functionalised with weak electroactive microorganisms offer a viable alternative to conventional chemical sensors for detecting priority pollutants in bioremediation processes. Biofilm-based biosensors have been proposed for this purpose. However, biofilm formation and maturation require 24-48 h, and the microstructure and coverage of the electrode surface cannot be controlled, leading to poorly reproducible signal and sensitivity.

View Article and Find Full Text PDF

Pharmaceutical ingredients in water have become a serious threat to living bodies and lead to assorted ecological predicaments. In this study, we have established an electrochemical probe for the simultaneous detection of synthetic pharmaceutical ingredients, including 4-nitroquinoline-N-Oxide (NQN) and ornidazole (ODZ), in both human and environmental samples. This study establishes the detection of NQN and ODZ using a screen-printed carbon electrode (SPCE) modified by highly conducting NbN incorporated with BaZrO perovskite.

View Article and Find Full Text PDF

Cuprous oxide-functionalized activated porous carbon-modified screen-printed carbon electrode integrated with a smartphone for portable electrochemical nitrate detection.

Talanta

January 2025

Center of Excellence for Trace Analysis and Biosensor, Prince of Songkla University, Hat Yai, Songkhla, 90110, Thailand; Center of Excellence for Innovation in Chemistry, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla, 90110, Thailand; Division of Health and Applied Sciences, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla, 90110, Thailand; Forensic Science Innovation and Service Center, Prince of Songkla University, Hat Yai, Songkhla, 90110, Thailand.

Nitrate (NO) is a widespread contaminant in drinking water. An electrochemical NO sensor was developed based on a first-time application of materials. Activated porous carbon (APC) was synthesized by carbonizing orange peel (OP) activated with KOH.

View Article and Find Full Text PDF

A few decades ago, the technological boom revolutionized access to information, ushering in a new era of research possibilities. Electrochemical devices have recently emerged as a key scientific advancement utilizing electrochemistry principles to detect various chemical species. These versatile electrodes find applications in diverse fields, such as healthcare diagnostics and environmental monitoring.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!