Cadmium (Cd), an occupational and environmental pollutant, induces nephrotoxicity by primarily damaging renal proximal tubular cells. In this study, we hypothesized that pyroptosis, a caspase-1-dependent inflammatory programmed cell death mechanism, mediates Cd-induced nephrotoxicity. Human proximal tubular epithelial HK-2 cells were treated with 0-10 µM CdCl for 48 h. We found that Cd dose-dependently caused cytotoxicity, which correlated with activation of the NLRP3 inflammasome, increases in the expression and secretion of pro-inflammatory cytokines and upregulation of pyroptosis-related genes in HK-2 cells or/and in kidneys of Cd-treated mice. These effects were significantly abrogated by inhibiting caspase-1 activity with inhibitor YVAD or silencing NLRP3 with siRNA in vitro, suggesting that Cd induces caspase-1- and NLRP3-inflammasome-dependent pyroptosis. Moreover, Cd treatment also activated three branches (ATF6, PERK and IRE-1α) of endoplasmic reticulum stress. Selective inhibition of the IRE-1α/XBP-1s branch by a pharmacological inhibitor STF-083010 or by genetic silencing of XBP-1 significantly attenuated Cd-induced NLRP3 inflammasome activation and pyroptosis. Mechanistically, Cd suppressed deacetylase Sirtuin-1 (SIRT-1) protein expression and activity leading to decrease in physical binding with XBP-1s protein, and thus the accumulation of acetylated XBP-1s levels. Activation of SIRT1 using a pharmacological agonist resveratrol or genetic SIRT1 overexpression significantly abolished Cd-induced activation of the IRE-1α/XBP-1s pathway and the NRLP3 inflammasome as well as pyroptosis, which were counteracted by co-overexpression of both SIRT1 and XBP-1s. Collectively, our findings indicate that SIRT1 activity protects against Cd-induced pyroptosis through deacetylating XBP-1s, and thus inhibiting the IRE-1α/XBP-1s pathway in HK-2 cells. These results provide a novel mechanism for Cd-induced nephrotoxicity.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s00204-019-02415-8 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!