Substrate variations are likely to constrain animal performance in natural environments, as running over complex terrains challenges the dynamic stability of the body differently in each step. Yet, being able to negotiate complex terrains at top speed is a strong advantage for animals that have to deal with predators and evasive prey. Little is known on how animals negotiate such terrain variability at high speed. We investigated this in fast-running lizards, by measuring their 3D kinematics using four synchronised high-speed video cameras (325 Hz) on an adaptable racetrack. This racetrack was covered with four different substrates, representing increasing levels of terrain complexity. We found that the lizards deal with this complexity gradient by gradually adopting more erect parasagittal leg postures. Legs in a more-erect position are more compliant and are therefore highly adjustable on complex terrains. Additionally, the lizards stabilise their head, which facilitates vestibular and visual perception. Together, compliant legs and head stabilisation enable the lizards to minimise movements of the body centre of mass, even when running on highly irregular terrains. This suggests that the head and the centre of mass are the priority targets for running on uneven terrains. As a result, running performance (mean forward speed) decreases only slightly, and only on the most challenging substrate under investigation.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1242/jeb.195511 | DOI Listing |
Int J Biometeorol
January 2025
5th Department of Internal Medicine, "Iuliu Haţieganu" University of Medicine and Pharmacy Cluj-Napoca,Romania, Victor Babeş Str., No. 43, 400012, Cluj-Napoca, Romania.
The treatment of type 2 diabetes patients with diabetic neuropathy using pharmacological and non-pharmacological measures remains a current topic. The aim of this study is to evaluate the effect of comprehensive medical rehabilitation programs that include natural therapeutic factors (carbonated natural mineral water) on pain, gait, and functional status in these patients. Fifty patients diagnosed with type 2 diabetes and diabetic neuropathy in the lower limbs participated in the study.
View Article and Find Full Text PDFAdv Mater
January 2025
School of Mechatronic Engineering and Automation, Shanghai University, Shanghai, 200444, P. R. China.
Leech locomotion, characterized by alternating sucker attachment and body contraction provides high adaptability and stability on complex terrains. Herein, a leech-inspired triboelectric soft robot is proposed for the first time, capable of amphibious movement, climbing, and load-carrying crawling. A high-performance triboelectric bionic robot system is developed to drive and control electro-responsive soft robots.
View Article and Find Full Text PDFNat Commun
January 2025
Graduate School of Information Science and Technology, Osaka University, 1-5 Yamadaoka, Suita, 5650871, Osaka, Japan.
Cyborg insects refer to hybrid robots that integrate living insects with miniature electronic controllers to enable robotic-like programmable control. These creatures exhibit advantages over conventional robots in adaption to complex terrain and sustained energy efficiency. Nevertheless, there is a lack of literature on the control of multi-cyborg systems.
View Article and Find Full Text PDFEnviron Sci Pollut Res Int
January 2025
Water Resources Development and Management, Indian Institute of Technology, Roorkee, Uttarakhand, India.
The rapid urbanization, industrial growth, and socio-cultural activities along riverbanks in hilly cities are transforming land use and intensifying water infrastructure challenges. Paonta Sahib, a culturally significant town in Himachal Pradesh on the Yamuna River, along the foothills of the Himalayas exemplifies these pressures due to its religious tourism, industrialization, and mining activities. This study explores sustainable riverfront development at Paonta Sahib, addressing socio-cultural, environmental, and technical concerns essential for eco-sensitive urban planning.
View Article and Find Full Text PDFSci Rep
January 2025
Key Laboratory for Humid Subtropical Eco-geographical Processes of the Ministry of Education, Fujian Normal University, Fuzhou, 350117, China.
Global warming has profound effects on precipitation patterns, leading to more frequent and extreme precipitation events over the world. These changes pose significant challenges to the sustainable development of socio-economic and ecological environments. This study evaluated the performance of the new generation of the mesoscale Weather Research and Forecasting (WRF) model in simulating long-term extreme precipitation events over the Minjiang River Basin (MRB) of China from 1981 to 2020.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!