Acute myeloid leukemia (AML) is a clonal disease caused by genetic abberations occurring predominantly in the elderly. Next generation sequencing (NGS) analysis has led to a deeper genetic understanding of the pathogenesis and the role of recently discovered genetic precursor lesions (clonal hematopoiesis of indeterminate/oncogenic potential (CHIP/CHOP)) in the evolution of AML. These advances are reflected by the inclusion of certain mutations in the updated World Health Organization (WHO) 2016 classification and current treatment guidelines by the European Leukemia Net (ELN) and National Comprehensive Cancer Network (NCCN) and results of mutational testing are already influencing the choice and timing of (targeted) treatment. Genetic profiling and stratification of patients into molecularly defined subgroups are expected to gain ever more weight in daily clinical practice. Our aim is to provide a concise summary of current evidence regarding the relevance of NGS for the diagnosis, risk stratification, treatment planning and response assessment in AML, including minimal residual disease (MRD) guided approaches. We also summarize recently approved drugs targeting genetically defined patient populations with risk adapted- and individualized treatment strategies.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6406956 | PMC |
http://dx.doi.org/10.3390/cancers11020252 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!