Polyampholyte cryogels are a less considered subject in comparison with cryogels based on nonionic, anionic and cationic precursors. This review is devoted to physicochemical behavior, complexation ability and catalytic properties of cryogels based on amphoteric macromolecules. Polyampholyte cryogels are able to exhibit the stimuli-responsive behavior and change the structure and morphology in response to temperature, pH of the medium, ionic strength and water⁻organic solvents. Moreover, they can uptake transition metal ions, anionic and cationic dyes, ionic surfactants, polyelectrolytes, proteins, and enzymes through formation of coordination bonds, hydrogen bonds, and electrostatic forces. The catalytic properties of polyampholyte cryogels themselves and with immobilized metal nanoparticles suspended are outlined following hydrolysis, transesterification, hydrogenation and oxidation reactions of various substrates. Application of polyampholyte cryogels as a protein-imprinted matrix for separation and purification of biomacromolecules and for sustained release of proteins is demonstrated. Comparative analysis of the behavior of polyampholyte cryogels with nonionic, anionic and cationic precursors is given together with concluding remarks.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6473870PMC
http://dx.doi.org/10.3390/gels5010008DOI Listing

Publication Analysis

Top Keywords

polyampholyte cryogels
24
catalytic properties
12
anionic cationic
12
properties polyampholyte
8
cryogels
8
cryogels based
8
nonionic anionic
8
cationic precursors
8
polyampholyte
6
physicochemical complexation
4

Similar Publications

Dynamic modulation and epoxy functionalization of protein-mediated enoate ester-based hybrid cryogels.

Int J Biol Macromol

December 2022

Istanbul Technical University, Department of Chemistry, Soft Materials Research Laboratory, 34469 Maslak, Istanbul, Turkey. Electronic address:

The current work is focused on the preparation of protein-mediated poly(hydroxyethyl methacrylate-co-glycidyl methacrylate) copolymer as a self-template for in situ synthesis of hybrid gels. Gelatin, collagen, biotin, and l-arginine were used to create hybrid materials with adjustable swelling and elastic properties. Hybrid cryogels tended to swell more than hybrid hydrogels due to their porous nature.

View Article and Find Full Text PDF

Shape-memory cryogels have drawn attention as an injectable system to minimize the risks associated with surgical implantation in tissue engineering. To achieve shape memory behavior with hydration as an external stimulus, it is necessary to have a porous elastic network. To achieve this, it is crucial to control the crosslinking process at the time of pore formation, especially for natural-based polymers.

View Article and Find Full Text PDF

Intra- and Interpolyelectrolyte Complexes of Polyampholytes.

Polymers (Basel)

October 2018

Department of Chemical Engineering, Texas Tech University, Lubbock TX 79409-3121, Box 43121, USA.

At present, a large amount of research from experimental and theoretical points of view has been done on interpolyelectrolyte complexes formed by electrostatic attractive forces and/or interpolymer complexes stabilized by hydrogen bonds. By contrast, relatively less attention has been given to polymer⁻polymer complex formation with synthetic polyampholytes (PA). In this review the complexation of polyampholytes with polyelectrolytes (PE) is considered from theoretical and application points of view.

View Article and Find Full Text PDF

Polyampholyte cryogels are a less considered subject in comparison with cryogels based on nonionic, anionic and cationic precursors. This review is devoted to physicochemical behavior, complexation ability and catalytic properties of cryogels based on amphoteric macromolecules. Polyampholyte cryogels are able to exhibit the stimuli-responsive behavior and change the structure and morphology in response to temperature, pH of the medium, ionic strength and water⁻organic solvents.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!