AI Article Synopsis

  • This study re-evaluated previous genome-wide association studies (GWASs) related to ANCA-associated vasculitis using statistical methods like false-positive report probability (FPRP) and Bayesian false discovery probability (BFDP).
  • The researchers identified a total of 241 articles, narrowing it down to 7 for in-depth analysis, revealing that most significant single nucleotide polymorphisms (SNPs) from GWASs were noteworthy, especially those with borderline p-values.
  • The gene ontology analysis highlighted immune-related terms and pathways, particularly emphasizing the interferon-gamma (IFN-γ) signaling pathway as a potential key mechanism in the complex causes of ANCA-associated vasculitis.

Article Abstract

A number of genome-wide association studies (GWASs) and meta-analyses of genetic variants have been performed in antineutrophil cytoplasmic antibody (ANCA)-associated vasculitis. We reinterpreted previous studies using false-positive report probability (FPRP) and Bayesian false discovery probability (BFDP). This study searched publications in PubMed and Excerpta Medica Database (EMBASE) up to February 2018. Identification of noteworthy associations were analyzed using FPRP and BFDP, and data (i.e., odds ratio (OR), 95% confidence interval (CI), -value) related to significant associations were separately extracted. Using filtered gene variants, gene ontology (GO) enrichment analysis and protein⁻protein interaction (PPI) networks were performed. Overall, 241 articles were identified, and 7 were selected for analysis. Single nucleotide polymorphisms (SNPs) discovered by GWASs were shown to be noteworthy, whereas only 27% of significant results from meta-analyses of observational studies were noteworthy. Eighty-five percent of SNPs with borderline -values (5.0 × 10 < < 0.05) in GWASs were found to be noteworthy. No overlapping SNPs were found between PR3-ANCA and MPO-ANCA vasculitis. GO analysis revealed immune-related GO terms, including "antigen processing and presentation of peptide or polysaccharide antigen via major histocompatibility complex (MHC) class II", "interferon-gamma-mediated (IFN-γ) signaling pathway". By using FPRP and BFDP, network analysis of noteworthy genetic variants discovered genetic risk factors associated with the IFN-γ pathway as novel mechanisms potentially implicated in the complex pathogenesis of ANCA-associated vasculitis.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6406345PMC
http://dx.doi.org/10.3390/jcm8020266DOI Listing

Publication Analysis

Top Keywords

genetic variants
12
antineutrophil cytoplasmic
8
anca-associated vasculitis
8
fprp bfdp
8
gwass noteworthy
8
noteworthy
5
genetic
4
variants antineutrophil
4
cytoplasmic antibody-associated
4
vasculitis
4

Similar Publications

Importance: CHEK2 pathogenic and likely pathogenic variants (PVs) are common, and low-risk (LR) variants, p.I157T, p.S428F, and p.

View Article and Find Full Text PDF

Purpose: This study aimed to identify a novel recombinant adeno-associated virus (rAAV) capsid variant that can widely transfect the deep retina through intravitreal injection and to assess their effectiveness and safety in gene delivery.

Methods: By adopting the sequences of various cell-penetrating peptides and inserting them into the capsid modification region of AAV2, we generated several novel variants. The green fluorescent protein (GFP)-carrying variants were screened following intravitreal injection.

View Article and Find Full Text PDF

Backtracking Cell Phylogenies in the Human Brain with Somatic Mosaic Variants.

Methods Mol Biol

January 2025

Sorbonne Université, Institut du Cerveau (Paris Brain Institute) ICM, Inserm, CNRS, Hôpital de la Pitié Salpêtrière, Paris, France.

Somatic mosaic variants, and especially somatic single nucleotide variants (sSNVs), occur in progenitor cells in the developing human brain frequently enough to provide permanent, unique, and cumulative markers of cell divisions and clones. Here, we describe an experimental workflow to perform lineage studies in the human brain using somatic variants. The workflow consists in two major steps: (1) sSNV calling through whole-genome sequencing (WGS) of bulk (non-single-cell) DNA extracted from human fresh-frozen tissue biopsies, and (2) sSNV validation and cell phylogeny deciphering through single nuclei whole-genome amplification (WGA) followed by targeted sequencing of sSNV loci.

View Article and Find Full Text PDF

Next-Generation Sequencing (NGS), also known as high-throughput sequencing technologies, has enabled rapid and efficient sequencing of large amounts of DNA and RNA. These technologies have revolutionized the field of genomics, transcriptomics, and proteomics and have been widely used in cancer research, leading to advances in clinical diagnosis and treatment. Improvements in the NGS technologies enabled millions of fragments to be sequenced simultaneously in a time- and cost-effective manner and resulted in large amount of genomic data which require efficient analysis methods.

View Article and Find Full Text PDF

DPYD genotype should be extended to rare variants: report on two cases of phenotype / genotype discrepancy.

Cancer Chemother Pharmacol

January 2025

Service de Génomique des Tumeurs et Pharmacologie, Hôpital Saint-Louis, Assistance Publique Hôpitaux de Paris, Paris, France.

The enzyme dihydropyrimidine dehydrogenase (DPD) is the primary catabolic pathway of fluoropyrimidines including 5 fluorouracil (5FU) and capecitabine. Cases of lethal toxicity have been reported in cancer patients with complete DPD deficiency receiving standard dose of 5FU or capecitabine. DPD is encoded by the pharmacogene DPYD in which more than 200 variants have been identified.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!