Carbon is used as a reinforcing phase in carbon-fiber reinforced polymer composites employed in aeronautical and other technological applications. Under polarization in aqueous media, which can occur on galvanic coupling of carbon-fiber reinforced polymers (CFRP) with metals in multi-material structures, degradation of the composite occurs. These degradative processes are intimately linked with the electrically conductive nature and surface chemistry of carbon. This review highlights the potential corrosion challenges in multi-material combinations containing carbon-fiber reinforced polymers, the surface chemistry of carbon, its plausible effects on the electrochemical activity of carbon, and consequently the degradation processes on carbon-fiber reinforced polymers. The implications of the emerging use of conductive nano-fillers (carbon nanotubes and carbon nanofibers) in the modification of CFRPs on galvanically stimulated degradation of CFRP is accentuated. The problem of galvanic coupling of CFRP with selected metals is set into perspective, and insights on potential methods for mitigation and monitoring the degradative processes in these composites are highlighted.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6416565 | PMC |
http://dx.doi.org/10.3390/ma12040651 | DOI Listing |
Sci Rep
January 2025
Department of Materials Science, Graduate School of Engineering, Chiba University, 1-33, Yayoi-cho, Inage-ku, Chiba, 263-8522, Japan.
High-strength carbon fibers were recovered by a new method, involving the decomposition of the thermosetting resin part of carbon fiber-reinforced plastic (CFRP) by heating it in a mixture of sodium hydroxide (NaOH) and potassium hydroxide (KOH). Alkali molten hydroxide was prepared by heating the mixture of NaOH and KOH at various ratios (NaOH: KOH = 1:0, 3:1, 1:1, 1:3, 0:1) at 400C, and the CFRP was then heated with the aforementioned alkali molten hydroxide under a nitrogen atmosphere at 200-400C for 0-90 min. Subsequently, the CFRP was washed with distilled water and filtered to recover the carbon fibers, and its tensile strength was estimated.
View Article and Find Full Text PDFRev Sci Instrum
January 2025
School of Electrical and Electronic Engineering, The University of Manchester, Manchester M13 9PL, United Kingdom.
Carbon fiber reinforced polymers (CFRPs) are widely used in fields such as aviation and aerospace. However, subtle defects can significantly impact the material's service life, making defect detection a critical priority. In this paper, delamination defects in CFRP are detected using line laser infrared thermography, and a defect characterization algorithm that combines differential thermography with a frequency-domain filter is proposed.
View Article and Find Full Text PDFUltrasonics
December 2024
School of Mechatronic & Automation Engineering, Shanghai University, Shanghai 200444, China; Key Laboratory of Silicate Cultural Relics Conservation (Shanghai University), Ministry of Education, China. Electronic address:
Fiber reinforced polymer composites (FRPs) are essential for various industrial fields, but wrinkles inside will greatly reduce their mechanical properties. Full-matrix capture (FMC) is a popular data structure for ultrasonic phased array imaging in composites. However, such structure may lead to data redundancy and noise interference.
View Article and Find Full Text PDF3D Print Addit Manuf
October 2024
Industry Engineering Department, School of Mechanical Engineering, Northwestern Polytechnical University, Xi'an, P.R. China.
The varied material and the inherent complex microstructure make predicting the effective stiffness of fused deposition modeling (FDM) printed polylactic acid (PLA)/carbon fiber (CF) composite a troublesome problem. This article proposes a microstructure scanning electron microscope (SEM) mapping modeling and numerical mean procedure to calculate the effective stiffness of FDM printing PLA/CF laminates. The printed PLA/CF parts were modeled as a continuum of 3D uniform linear elasticity with orthotropic anisotropy, and their elastic behavior was characterized by orthotropic constitutive relations.
View Article and Find Full Text PDFSci Rep
December 2024
College of Aerospace Engineering, Shenyang Aerospace University, Shenyang, 110136, China.
This paper had conducted tensile shear tests on single-lap joints (SLJs)bonded structures of carbon fiber reinforced resin matrix (CFRP) composite laminates with different overlap lengths, overlap widths, overlap model, adherend material, and adhesive layer thicknesses under two environments: room temperature dry state (RTD) and elevated temperature wet state (ETW). The failure modes were observed, and load-displacement curves were obtained. The microscopic morphology of the fracture surface was observed by scanning electron microscope (SEM).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!