Moving from the traditional paradigm of pathogen inactivation to controlling antibiotic resistance in water - Role of ultraviolet irradiation.

Sci Total Environ

Department of Chemical and Environmental Engineering, School of Engineering, RMIT University, Melbourne 3001, Australia.

Published: April 2019

Ultraviolet (UV) irradiation has proven an effective tool for inactivating microorganisms in water. There is, however, a need to look at disinfection from a different perspective because microbial inactivation alone may not be sufficient to ensure the microbiological safety of the treated water since pathogenic genes may still be present, even after disinfection. Antibiotic resistance genes (ARGs) are of a particular concern since they enable microorganisms to become resistant to antibiotics. UV irradiation has been widely used for disinfection and more recently for destroying ARGs. While UV lamps remain the principal technology to achieve this objective, UV light emitting diodes (UV-LEDs) are novel sources of UV irradiation and have increasingly been reported in lab-scale investigations as a potential alternative. This review discusses the current state of the applications of UV technology for controlling antibiotic resistance during water and wastewater treatment. Since UV-LEDs possess several attractive advantages over conventional UV lamps, the impact of UV-LED characteristics (single vs combined wavelengths, and operational parameters such as periodic or pulsed and continuous irradiation, pulse repetition frequencies, duty cycle), type of organism, and fluence response, are critically reviewed with a view to highlighting the research needs for addressing future disinfection challenges. The energy efficiency of the reported UV processes is also evaluated with a focus on relating the findings to disinfection efficacy. The greater experience with UV lamps could be useful for investigating UV-LEDs for similar applications (i.e., antibiotic resistance control), and hence identification of future research directions.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.scitotenv.2019.01.289DOI Listing

Publication Analysis

Top Keywords

antibiotic resistance
16
controlling antibiotic
8
resistance water
8
ultraviolet irradiation
8
irradiation
5
disinfection
5
moving traditional
4
traditional paradigm
4
paradigm pathogen
4
pathogen inactivation
4

Similar Publications

The Helicobacter pylori flagellar motor contains several accessory structures that are not found in the archetypal Escherichia coli and Salmonella enterica motors. H. pylori hp0838 encodes a previously uncharacterized lipoprotein and is in an operon with flgP, which encodes a motor accessory protein.

View Article and Find Full Text PDF

Non-conformance with antibiotic withdrawal period guidelines represents a food safety concern, with potential for antibiotic toxicities and allergic reactions as well as selecting for antibiotic resistance. In the Kenyan domestic pig market, conformance with antibiotic withdrawal periods is not a requirement of government legislation and evidence suggests that antibiotic residues may frequently be above recommended limits. In this study, we sought to explore enablers of and barriers to conformance with antibiotic withdrawal periods for pig farms supplying a local independent abattoir in peri-urban Nairobi.

View Article and Find Full Text PDF

Antimicrobial peptides (AMPs) are promising agents for treating antibiotic-resistant bacterial infections. Although discovering novel AMPs is crucial for combating multidrug-resistant bacteria and biofilm-related infections, their clinical potential relies on precise, real-time evaluation of efficacy, toxicity, and mechanisms. Optical diffraction tomography (ODT), a label-free imaging technology, enables real-time visualization of bacterial morphological changes, membrane damage, and biofilm formation over time.

View Article and Find Full Text PDF

The agricultural productivity and world-wide food security is affected by different phytopathogens, in which Fusarium is more destructive affecting more than 150 crops, now got resistance against many fungicides that possess harmful effects on environment such as soil health, air pollution, and human health. Fusarium fungicide resistance is an increasing concern in agricultural and environmental contexts, requiring a thorough understanding of its causes, implications, and management approaches. The mechanisms of fungicide resistance in Fusarium spp.

View Article and Find Full Text PDF

A major risk to the poultry industry is antimicrobial resistance (AMR), specifically with regard to Mycoplasma gallisepticum (MG) infections. The sensitivity patterns of 100 MG isolates to biocides and antibiotics were examined in this study to clarify the interactions between antimicrobial agents and resistance mechanisms. The antimicrobial activity against MG was assessed using broth microdilution, and the results are shown as the minimum inhibitory concentration (MIC) for each strain, the MIC distribution (range), the MIC, and/or the MIC.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!