Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Nanostructured devices are able to foster the technology for cell membrane poration. With the size smaller than a cell, nanostructures allow efficient poration on the cell membrane. Emerging nanostructures with various physical transduction have been demonstrated to accommodate effective intracellular delivery. Aside from improving poration and intracellular delivery performance, nanostructured devices also allow for the discovery of novel physiochemical phenomena and the biological response of the cell. This article provides a brief introduction to the principles of nanostructured devices for cell poration and outlines the intracellular delivery capability of the technology. In the future, we envision more exploration on new nanostructure designs and creative applications in biomedical fields.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1088/1361-6528/ab096b | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!