The aggregation and accumulation of amyloid beta (Aβ) peptide is believed to be the primary cause of Alzheimer's disease (AD) pathogenesis. Vitamin D-binding protein (DBP) can attenuate Aβ aggregation and accumulation. A biocompatible polymer poly (-lactic acid-co-glycolic acid) (PLGA) can be loaded with therapeutic agents and control the rate of their release. In the present study, a PLGA-based drug delivery system was used to examine the therapeutic effects of DBP-PLGA nanoparticles in Aβ-overexpressing (5XFAD) mice. DBP was loaded into PLGA nanoparticles and the characteristics of the DBP-PLGA nanoparticles were analyzed. Using a thioflavin-T assay, we observed that DBP-PLGA nanoparticles significantly inhibited Aβ aggregation in vitro. In addition, we found that intravenous injection of DBP-PLGA nanoparticles significantly attenuated the Aβ accumulation, neuroinflammation, neuronal loss and cognitive dysfunction in the 5XFAD mice. Collectively, our results suggest that DBP-PLGA nanoparticles could be a promising therapeutic candidate for the treatment of AD.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.nano.2019.02.004 | DOI Listing |
Nanomedicine
April 2019
Department of Biochemistry, College of Medicine, Konyang University, Daejeon, Republic of Korea. Electronic address:
The aggregation and accumulation of amyloid beta (Aβ) peptide is believed to be the primary cause of Alzheimer's disease (AD) pathogenesis. Vitamin D-binding protein (DBP) can attenuate Aβ aggregation and accumulation. A biocompatible polymer poly (-lactic acid-co-glycolic acid) (PLGA) can be loaded with therapeutic agents and control the rate of their release.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!