Blast, caused by , has become a devastating disease on wheat in several countries worldwide. Growers need alternative methods for blast management, and silicon (Si) stands out for its potential to decrease the intensity of important diseases in several crops. This study investigated the effect of Si on improving photoassimilate production on flag leaves of wheat plants and their partitioning to spikes in a scenario where blast symptoms decreased as a result of potentiation of defense mechanisms by Si. Wheat plants (cultivar BRS Guamirim) were grown in hydroponic culture with 0 or 2 mM Si and inoculated with at 10 days after anthesis. The Si concentration on flag leaves and spikes of Si-supplied plants increased and resulted in lower blast symptoms. High concentrations of total soluble phenols and lignin-thioglycolic acid derivatives and greater peroxidase, polyphenoloxidase, phenylalanine ammonia-lyase, β-1,3-glucanase, and chitinase activity occurred on flag leaves and spikes of Si-supplied plants and increased their resistance to blast. The concentration of photosynthetic pigments decreased and the photosynthetic performance of infected flag leaves and spikes from plants not supplied with Si was impaired for chlorophyll fluorescence parameters including maximal photosystem II quantum efficiency, fraction of energy absorbed used in photochemistry, quantum yield of nonregulated energy dissipation, and quantum yield of regulated energy dissipation. The concentration of soluble sugars was lower on infected flag leaves and spikes from plants not supplied with Si, whereas the hexose-to-sucrose ratio increased on infected flag leaves. Sucrose-phosphate synthase activity was lower and acid invertase activity was higher on flag leaves and spikes of plants not supplied with Si, respectively, compared with Si-supplied plants. The starch concentration on spikes of Si-supplied plants increased. In conclusion, Si showed a beneficial effect in improving the source-sink relationship of infected flag leaves and spikes by preserving alterations in assimilate production and partitioning during the grain filling process.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1094/PHYTO-11-18-0428-R | DOI Listing |
PeerJ
December 2024
Field Crops/Agricultural Faculty, Ordu University, Ordu, Turkey.
It is very important to determine the chlorophyll content (SPAD) and nitrogen (N) requirement in order to increase the seed yield and nutritional quality of wheat. This research was carried out with three N doses (0, 50, 100 kg ha) and nine wheat cultivars (Alpu-2001, Soyer-02, Kate-A1, Bezostaja-1, Altay-2000, Müfitbey, Nacibey, Harmankaya-99 and Sönmez-2001) during 2-years field condition according to factorial randomized complete block design and three replications. In this study, with the increase of N dose (N50), seed yield increased by 13%, plant height by 10.
View Article and Find Full Text PDFBackground And Aims: Since salinity stress may occur across stages of rice (Oryza sativa L.) crop growth, understanding the effects of salinity at reproductive stage is important although it has been much less studied than at seedling stage.
Methods: In this study, lines from the Rice Diversity Panel 1 (RDP1) and the 3000 Rice Genomes (3KRG) were used to screen morphological and physiological traits, map loci controlling salinity tolerance through genome-wide association studies (GWAS), and identify favorable haplotypes associated with reproductive stage salinity tolerance.
Front Plant Sci
December 2024
State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Ministry of Science and Technology, Chengdu, Sichuan, China.
Low solar irradiance reaching the canopy due to fog and heavy haze is a significant yield-limiting factor worldwide. However, how plants adapt to shade stress and the mechanisms underlying the reduction in leaf photosynthetic capacity and grain yield remain unclear. In this study (conducted during 2018-2021), we investigated the impact of light deprivation (60%) at the pre-anthesis and post-anthesis stages on leaf carboxylation efficiency, source-to-sink relationships, sucrose metabolism, and grain yield of wheat cultivars with contrasting shade tolerance.
View Article and Find Full Text PDFBMC Genomics
December 2024
Texas A&M AgriLife Research Center, Beaumont, TX, 77713, USA.
Background: Flag leaf (FL) and panicle architecture (PA) are critical for increasing rice grain yield as well as production. A genome-wide association study (GWAS) can better understand the genetic pathways behind complex traits like FL and PA.
Results: In this study, 208 diverse rice germplasms were grown in the field at the Texas A&M AgriLife Research Center at Beaumont, TX, during 2022 and 2023 following Augmented Randomized Complete Block Design.
BMC Genomics
December 2024
Triticeae Research Institute, Sichuan Agricultural University, Huimin Road 211#, Wenjiang, Chengdu, 611130, Sichuan Province, China.
Grain copper (Cu) concentrations represent a qualitative trait mainly controlled by genetic factors, which may differ between wheat varieties from the Sichuan Basin of China and other areas. However, the differences are poorly understood. Here, we investigated the grain Cu concentration in a remaining heterozygous line population derived from a multiparental recombinant inbred line.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!