Shiga toxin-producing Escherichia coli (STEC) serogroups O26, O45, O103, O111, O121, and O145, referred to as the top six non-O157 serogroups, are responsible for more than 70% of human non-O157 STEC infections in North America. Cattle harbor non-O157 strains in the hindgut and shed them in the feces. The objective of this study was to use the U.S. Food and Drug Administration (FDA) E. coli identification (ECID) DNA microarray to identify the serotype, assess the virulence potential of each, and determine the phylogenetic relationships among five of the six non-O157 E. coli serogroups isolated from feedlot cattle feces. Forty-four strains of STEC, enterohemorrhagic E. coli (EHEC), enteropathogenic E. coli (EPEC), or putative nonpathotype E. coli (NPEC) of cattle origin and five human clinical strains of EHEC were assayed with the FDA-ECID DNA microarray. The cattle strains harbored diverse flagellar genes. The bovine and human strains belonging to serogroups O26, O45, and O103 carried stx only, O111 carried both stx and stx, and O145 carried either stx or stx. The strains were also positive for various subtypes of intimin and other adhesins (IrgA homologue adhesin, long polar fimbriae, mannose-specific adhesin, and curli). Both human and cattle strains were positive for LEE-encoded type III secretory system genes and non-LEE-encoded effector genes. SplitsTree4, a program used to determine the phylogenetic relationship among the strains, revealed that the strains within each serogroup clustered according to their pathotype. In addition to genes encoding Shiga toxins, bovine non-O157 E. coli strains possessed other major virulence genes, including those for adhesins, type III secretory system proteins, and plasmid-borne virulence genes, similar to human clinical strains. Because virulence factors encoded by these genes are involved in the pathogenesis of various pathotypes of E. coli, the bovine non-O157 strains could cause human illness. The FDA-ECID DNA microarray assay rapidly provided a profile of the virulence genes for assessment of the virulence potential of each strain.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.4315/0362-028X.JFP-18-393 | DOI Listing |
Microb Cell Fact
January 2025
College of Veterinary Medicine, Southwest University, Tiansheng Road NO.2, Chongqing, China.
Shiga toxin-producing Escherichia coli (STEC) is one of the major pathogens responsible for severe foodborne infections, and the common serotypes include E. coli O157, O26, O45, O103, O111, O121, and O145. Vaccination has the potential to prevent STEC infections, but no licensed vaccines are available to provide protection against multiple STEC infections.
View Article and Find Full Text PDFJ Food Prot
December 2024
Center for Food Animal Health (CFAH), Department of Animal Sciences, College of Food, Agriculture and Environmental Sciences, The Ohio State University, Wooster, OH 44691, USA. Electronic address:
This study investigated the impact of irrigation sources (pond, stream, and well) in high tunnel-dripline systems on the dissemination and persistence of foodborne pathogens (Escherichia coli O157, Listeria monocytogenes, Campylobacter spp., Salmonella spp., and the 'big six' Shiga toxin-producing E.
View Article and Find Full Text PDFGut Pathog
October 2024
Saudi Food and Drug Authority, Riyadh, Saudi Arabia.
Classification of pathogenic E. coli has been focused either in mammalian host or infection site, which offers limited resolution. This review presents a comprehensive framework for classifying all E.
View Article and Find Full Text PDFFoodborne Pathog Dis
November 2024
Center for Outcomes Research and Epidemiology, College of Veterinary MediciMine, Kansas State University, Manhattan, Kansas, USA.
The study was conducted to determine the proportion and concentration of enterohemorrhagic (EHEC) O157 and six non-O157 (O26, O45, O103, O111, O121, and O145) serogroups and identify seasonal and processing plant differences in feces and on hides of cull dairy cattle processed in commercial slaughterhouses in the United States. Approximately 60 rectal and 60 hide-on samples from matched carcasses were collected in each of three processing plants, in two periods; summer of 2017 and spring of 2018. Samples before enrichment were spiral plated to quantify EHEC, and postenriched samples underwent culture methods that included immuno-magnetic separation, plating on selective media, and PCR assays for identification and serogroup confirmation of putative isolates.
View Article and Find Full Text PDFEndocrines
June 2024
Radiology Informatics and Image Processing Laboratory, Department of Radiology, Wake Forest School of Medicine, Winston-Salem, NC 27101, USA.
Adult-onset diabetes increases one's risk of neurodegenerative disease including Alzheimer's disease (AD); however, the risk associated with youth-onset diabetes (Y-DM) remains underexplored. We quantified plasma biomarkers of neurodegeneration and AD in participants with Y-DM from the SEARCH cohort at adolescence and young adulthood (Type 1, n = 25; Type 2, n = 25; 59% female; adolescence, age = 15 y/o [2.6]; adulthood, age = 27.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!