Enzymatic Tagging of Glycoproteins on the Cell Surface for Their Global and Site-Specific Analysis with Mass Spectrometry.

Anal Chem

School of Chemistry and Biochemistry and the Petit Institute for Bioengineering and Bioscience , Georgia Institute of Technology, Atlanta , Georgia 30332 , United States.

Published: March 2019

AI Article Synopsis

  • The cell surface is covered with sugars linked to lipids or proteins, and surface glycoproteins are crucial for cell interactions and responses to the environment.
  • Abnormal glycosylation is often associated with diseases like cancer and infections, making the study of these molecules important for understanding disease mechanisms and identifying potential biomarkers.
  • A new method uses an enzyme to tag these surface glycoproteins for analysis via mass spectrometry, successfully identifying hundreds of glycosylation sites per experiment, which could significantly enhance glycoprotein research and applications in glycoscience.

Article Abstract

The cell surface is normally covered with sugars that are bound to lipids or proteins. Surface glycoproteins play critically important roles in many cellular events, including cell-cell communications, cell-matrix interactions, and response to environmental cues. Aberrant protein glycosylation on the cell surface is often a hallmark of human diseases such as cancer and infectious diseases. Global analysis of surface glycoproteins will result in a better understanding of glycoprotein functions and the molecular mechanisms of diseases and the discovery of surface glycoproteins as biomarkers and drug targets. Here, an enzyme is exploited to tag surface glycoproteins, generating a chemical handle for their selective enrichment prior to mass spectrometric (MS) analysis. The enzymatic reaction is very efficient, and the reaction conditions are mild, which are well-suited for surface glycoprotein tagging. For biologically triplicate experiments, on average 953 N-glycosylation sites on 393 surface glycoproteins per experiment were identified in MCF7 cells. Integrating chemical and enzymatic reactions with MS-based proteomics, the current method is highly effective to globally and site-specifically analyze glycoproteins only located on the cell surface. Considering the importance of surface glycoproteins, this method is expected to have extensive applications to advance glycoscience.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6518397PMC
http://dx.doi.org/10.1021/acs.analchem.9b00441DOI Listing

Publication Analysis

Top Keywords

surface glycoproteins
24
cell surface
16
surface
11
glycoproteins
8
enzymatic tagging
4
tagging glycoproteins
4
cell
4
glycoproteins cell
4
surface global
4
global site-specific
4

Similar Publications

Protein-protein interactions in the cell membrane are typically mediated by glycans, with terminal sialic acid often involved in these interactions. To probe the nature of the interactions, we developed quantitative cross-linking methods involving the glycans of the glycoproteins and the polypeptide moieties of proteins. We designed and synthesized biotinylated enrichable cross-linkers that were click-tagged to metabolically incorporate azido-sialic acid on cell surface glycans to allow cross-linking of the azido-glycans with lysine residues on proximal polypeptides.

View Article and Find Full Text PDF

Deubiquitinating enzymes (DUBs) are integral regulators of protein stability. Among these, Ubiquitin-specific protease 18 (USP18) has emerged as a potential therapeutic target for heart failure. However, its precise role in atherosclerosis remains to be comprehensively understood.

View Article and Find Full Text PDF

Background And Aims: Primary sclerosing cholangitis (PSC) is a chronic cholestatic liver disease characterised by progressive biliary inflammation and fibrosis, leading to liver cirrhosis and cholangiocarcinoma. GPBAR1 (TGR5) is a G protein-coupled receptor for secondary bile acids. In this study, we have examined the therapeutic potential of BAR501, a selective GPBAR1 agonist in a PSC model.

View Article and Find Full Text PDF

Background And Aims: Short courses of intravenous (iv) methylprednisolone (MP) can cause drug induced liver injury (DILI). The aim of this study was to assess the clinical features and HLA associations of MP-related DILI enrolled in the US DILI Network (DILIN).

Methods: DILIN cases with MP as a suspected drug were reviewed.

View Article and Find Full Text PDF

The recent landscape of RSV vaccine research.

Ther Adv Vaccines Immunother

January 2025

Oxford Vaccine Group, Department of Paediatrics, University of Oxford, Oxford, OX1 2JD, UK.

Respiratory syncytial virus (RSV) causes a significant burden of acute respiratory illness across all ages, particularly for infants and older adults. Infants, especially those born prematurely or with underlying health conditions, face a high risk of severe RSV-related lower respiratory tract infections (LRTIs). Globally, RSV contributes to millions of LRTI cases annually, with a disproportionate burden in low- and middle-income countries (LMICs).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!