A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Microfabricated liquid junction hybrid capillary electrophoresis-mass spectrometry interface for fully automated operation. | LitMetric

One of the challenging instrumental aspects in coupling an automated CE instrument with ESI mass spectrometry (CE-MS) is finding the balance between the stability, reproducibility and sensitivity of the analysis and compatibility with the standard CE instrumentation. Here, we present a development of a new liquid junction based electrospray interface for automated CE-MS, with a focus on the technical design followed by computer modeling of transport conditions as well as characterization of basic performance of the interface. This hybrid arrangement designed as a microfabricated unit attachable to the automated CE instrument allows using of a wide range of separation capillaries with respect to their diameter, length or internal coating (e.g., for suppressed electroosmotic flow). Different compositions of the ESI liquid and background electrolyte solutions can be used if needed. The microfabricated part, prepared by laser machining from polyimide, includes a self-aligning liquid junction, a short transport channel, and a pointed sprayer for the electrospray ionization. This microfabricated part is positioned in a plastic connection block securing the separation capillary and flushing ports. Transport conditions were modelled using computer simulation and the real life performance of the interface was compared to that of a commercial sheath liquid interface. The basic performance of the interface was demonstrated by separations of peptides, proteins, and oligosaccharides.

Download full-text PDF

Source
http://dx.doi.org/10.1002/elps.201900049DOI Listing

Publication Analysis

Top Keywords

liquid junction
12
performance interface
12
automated instrument
8
transport conditions
8
basic performance
8
interface
6
microfabricated
4
microfabricated liquid
4
junction hybrid
4
hybrid capillary
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!