The etiology of many complex diseases involves both environmental exposures and inherited genetic predisposition as well as interactions between them. Gene-environment-wide interaction studies (GEWIS) provide a means to identify the interactions between genetic variation and environmental exposures that underlie disease risk. However, current GEWIS methods lack the capability to adjust for the potentially complex correlations in studies with varying degrees of relationships (both known and unknown) among individuals in admixed populations. We developed novel generalized estimating equation (GEE) based methods-GEE-adaptive and GEE-joint-to account for phenotypic correlations due to kinship while accounting for covariates, including, measures of genome-wide ancestry. In simulation studies of admixed individuals, both methods controlled family-wise error rates, an advantage over the case-only approach. They demonstrated higher power than traditional case-control methods across a wide range of underlying alternative hypotheses, especially where both marginal and interaction effects were present. We applied the proposed method to conduct a GEWIS of a known sarcoidosis risk factor (insecticide exposure) and risk of sarcoidosis in African Americans and identified two novel loci with suggestive evidence of G × E interaction.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6648658PMC
http://dx.doi.org/10.1002/gepi.22196DOI Listing

Publication Analysis

Top Keywords

gene-environment-wide interaction
8
studies admixed
8
admixed individuals
8
varying degrees
8
degrees relationships
8
environmental exposures
8
extended methods
4
methods gene-environment-wide
4
interaction
4
interaction scans
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!