Bias-reduced and separation-proof GEE with small or sparse longitudinal binary data.

Stat Med

Institute of Statistical Research and Training, University of Dhaka, Dhaka, Bangladesh.

Published: June 2019

Generalized estimating equation (GEE) is a popular approach for analyzing correlated binary data. However, the problems of separation in GEE are still unknown. The separation created by a covariate often occurs in small correlated binary data and even in large data with rare outcome and/or high intra-cluster correlation and a number of influential covariates. This paper investigated the consequences of separation in GEE and addressed them by introducing a penalized GEE, termed as PGEE. The PGEE is obtained by adding Firth-type penalty term, which was originally proposed for generalized linear model score equation, to standard GEE and shown to achieve convergence and provide finite estimate of the regression coefficient in the presence of separation, which are not often possible in GEE. Further, a small-sample bias correction to the sandwich covariance estimator of the PGEE estimator is suggested. Simulations also showed that the GEE failed to achieve convergence and/or provided infinitely large estimate of the regression coefficient in the presence of complete or quasi-complete separation, whereas the PGEE showed significant improvement by achieving convergence and providing finite estimate. Even in the presence of near-to-separation, the PGEE also showed superior properties over the GEE. Furthermore, the bias-corrected sandwich estimator for the PGEE estimator showed substantial improvement over the standard sandwich estimator by reducing bias in estimating type I error rate. An illustration using real data also supported the findings of simulation. The PGEE with bias-corrected sandwich covariance estimator is recommended to use for small-to-moderate size sample (N ≤ 50) and even can be used for large sample if there is any evidence of separation or near-to-separation.

Download full-text PDF

Source
http://dx.doi.org/10.1002/sim.8126DOI Listing

Publication Analysis

Top Keywords

binary data
12
separation gee
12
gee
9
correlated binary
8
achieve convergence
8
finite estimate
8
estimate regression
8
regression coefficient
8
coefficient presence
8
sandwich covariance
8

Similar Publications

Background: Psychologists have developed frameworks to understand many constructs, which have subsequently informed the design of digital mental health interventions (DMHIs) aimed at improving mental health outcomes. The science of happiness is one such domain that holds significant applied importance due to its links to well-being and evidence that happiness can be cultivated through interventions. However, as with many constructs, the unique ways in which individuals experience happiness present major challenges for designing personalized DMHIs.

View Article and Find Full Text PDF

Background: Online malicious attempts such as scamming continue to proliferate across the globe, aided by the ubiquitous nature of technology that makes it increasingly easy to dupe individuals. This study aimed to identify the predictors for online fraud victimization focusing on Personal, Environment and Behavior (PEB).

Methods: Social Cognitive Theory (SCT) was used as a guide in developing the PEB framework.

View Article and Find Full Text PDF

Background And Objectives: People living with dementia experience progressive functional decline and increased dependence on caregivers. This study examined the influence of caregivers' dementia health literacy on perceptions of medical care preferences and advanced care planning (ACP) in people living with dementia.

Research Design And Methods: This analysis used data from a cross-sectional survey, "Care Planning for Individuals with Dementia", administered nationwide by Alzheimer's Disease Centers.

View Article and Find Full Text PDF

Motivation: Histone modifications play an important role in transcription regulation. Although the general importance of some histone modifications for transcription regulation has been previously established, the relevance of others and their interaction is subject to ongoing research. By training Machine Learning models to predict a gene's expression and explaining their decision making process, we can get hints on how histone modifications affect transcription.

View Article and Find Full Text PDF

pLM4CPPs: Protein Language Model-Based Predictor for Cell Penetrating Peptides.

J Chem Inf Model

January 2025

Department of Grain Science and Industry, Kansas State University, Manhattan, Kansas 66506, United States.

Cell-penetrating peptides (CPPs) are short peptides capable of penetrating cell membranes, making them valuable for drug delivery and intracellular targeting. Accurate prediction of CPPs can streamline experimental validation in the lab. This study aims to assess pretrained protein language models (pLMs) for their effectiveness in representing CPPs and develop a reliable model for CPP classification.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!