Objectives: To characterize the genome of an Escherichia coli harbouring both mcr-1 and mcr-3.19 on a hybrid plasmid and the underlying transmission mechanisms.
Methods: Broth microdilution was used to perform antimicrobial susceptibility testing. Conjugation assays and S1-PFGE were used to assess the transferability of mcr genes. Resistance genotypes and genetic contexts were investigated, based on WGS data from the Illumina and MinION platforms. Inverse PCR was performed to test the mcr-3.19-bearing circular intermediate. Bioinformatic tools were used to further characterize the hybrid plasmid.
Results: E. coli CP53 was identified as harbouring both mcr-1 and mcr-3.19 on a 231 859 bp hybrid plasmid pCP53-mcr1_3 containing IncFIA, IncHI1A, IncHI1B and IncN replicons. The genetic structures of mcr-1 and mcr-3.19 were similar to those reported in other mcr-1 and mcr-3.19-bearing plasmids, which suggested that recombination between mcr-bearing plasmids had been mediated by ISs. However, the MDR plasmid pCP53-mcr1_3 cannot transfer via conjugation. Furthermore, another three plasmids were identified in the isolate, two of which encoded resistance genes. In640 duplication between two MDR plasmids was observed. An MDR-region recombination existed in E. coli CP53. A core structure consisting of mcr-3-dgkA existed in mcr-3-bearing plasmids reported, to date. Circular intermediates were observed for mcr-1 and mcr-3.19 regions.
Conclusions: A novel mcr-3.19 was identified along with mcr-1 contained in a hybrid plasmid. This finding suggested that evolution of mcr genes among various plasmids was being driven by mobile elements. Molecular surveillance of mcr gene co-occurrence warrants further investigation to evaluate the public health risk.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1093/jac/dkz058 | DOI Listing |
Int J Mol Sci
January 2025
Department of Biomedical Engineering, Faculty of Engineering and Natural Sciences, Acibadem Mehmet Ali Aydinlar University, 34752 Istanbul, Türkiye.
Gene II Protein (Gp2/P2) is a nicking enzyme of the M13 bacteriophage that plays a role in the DNA replication of the viral genome. P2 recognizes a specific sequence at the f1 replication origin and nicks one of the strands and starts replication. This study was conducted to address the limitations of previous experiments, improve methodologies, and precisely determine the biochemical activity conditions of the P2 enzyme in vitro.
View Article and Find Full Text PDFJ Infect
January 2025
Center for Disease Control and Prevention of Chinese PLA, Beijing, China. Electronic address:
Objectives: Salmonella enterica serovar Enteritidis (S. Enteritidis) is a commonly reported pathogen which adapts to multiple hosts and causes critical disease burden at a global level. Here, we investigated a recently derived epidemic sublineage with multidrug resistance (MDR), which have caused extended time-period and cross-regional gastroenteritis outbreaks and even invasive nontyphoidal Salmonella disease (iNTS) in China.
View Article and Find Full Text PDFInvest Ophthalmol Vis Sci
January 2025
Biology and Biochemistry PhD Programs, Graduate Center, City University of New York, New York, New York, United States.
Purpose: Retinal development in the mouse continues past birth and provides a widely used model system in which photoreceptor formation can be observed and manipulated. This experimental paradigm provides opportunities for both gain-of-function and loss-of-function studies, which can be accomplished through in vivo or ex vivo plasmid delivery and electroporation. However, the cis-regulatory elements used to implement this approach have not been fully evaluated or optimized for the unique transcriptional environment of photoreceptors.
View Article and Find Full Text PDFFront Microbiol
January 2025
Institute of Microbiology, University of Agriculture, Faisalabad, Pakistan.
Background: Colistin is an antibiotic used as a last resort to treat multidrug-resistant Gram-negative bacterial infections. Plasmid-mediated mobile colistin-resistant () genes in () are disseminated globally and are considered to be a major public health threat. This study aimed to determine the molecular characteristics of colistin-resistant isolates in clinical settings in Pakistan.
View Article and Find Full Text PDFCan J Microbiol
January 2025
Canadian Food Inspection Agency, Ottawa Laboratory (Carling), Ottawa, Ontario, Canada;
Escherichia coli is a Gram-negative bacterium that is ubiquitous in animals and humans, with some strains capable of causing disease. The aim of this study was to perform a comparative genomic analysis of 2,732 generic E. coli isolates that were recovered from poultry samples collected from six regions in Canada as part of the National Microbiological Baseline study in Broiler Chicken.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!