Background: Human platelet lysate (hPL) represents a powerful medium supplement for human mesenchymal stromal cell (hMSC) expansion. The recently published general chapters of the Pharmacopeia require the addition of a step of viral inactivation during the production process of such raw biological material used for cell-based medicinal products.
Study Design And Methods: The ability of gamma irradiation to inactivate viruses from a panel representative of the virus diversity was evaluated. The impact of gamma irradiation on hPL composition and efficiency as a supplement for hMSC culture was evaluated.
Results: An efficient inactivation of all the viruses tested was demonstrated, with the minimum reduction factors obtained being superior to 4.5 log for human immunodeficiency virus (HIV) and hepatitis A virus (HAV) and superior to 5 log for bovine viral diarrhea virus (BVDV), pseudorabies virus (PRV) and porcine parvovirus (PPV). The gamma irradiation did not affect the content in interesting biochemical factors for cell culture or in growth factors (GF), except to basic fibroblast GF (bFGF) whereas it highly impacted the contents in the factors involved in the coagulation cascade. Finally, gamma irradiated hPL remained as efficient as non-irradiated hPL for the proliferation, clonogenic potential, differentiation potential, and immunosuppressive properties of hMSCs.
Conclusion: The feasibility of using gamma irradiation to efficiently inactivate viruses in hPL while maintaining its optimal efficacy as a supplement for hMSC expansion was demonstrated. Such an inactivated hPL represents a very attractive raw material for the efficient production of safe cellular therapy products.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1111/trf.15205 | DOI Listing |
Environ Res
January 2025
Radiation Biotechnology Division, Korea Atomic Energy Research Institute, Jeongeup 56212, Republic of Korea. Electronic address:
Toxic and carcinogenic compounds, such as synthetic dyes and polyphenols, were widely employed and released as pollutants in a variety of industries, including textiles, food, and cosmetics. Biological oxidation process that used oxidizing enzymes to breakdown pollutant compounds were environmentally favorable. However, due to the cell toxicity of metal ions supplements used for the biosynthesis of oxidizing enzymes like laccase, their efficient application for biological degradation is limited.
View Article and Find Full Text PDFSensors (Basel)
January 2025
Soreq NRC, Yavne 81800, Israel.
Fiber Bragg gratings (FBGs) inscribed by UV light and different femtosecond laser techniques (phase mask, point-by-point, and plane-by-plane) were exposed-in several irradiation cycles-to accumulated high doses of gamma rays (up to 124 MGy) and neutron fluence (8.7 × 10/cm) in a research-grade nuclear reactor. The FBG peak wavelengths were measured continuously in order to monitor radiation-induced shifts.
View Article and Find Full Text PDFBiomolecules
December 2024
Department of Biochemistry, Faculty of Science, University of Tabuk, Tabuk 71491, Saudi Arabia.
Radiotherapy is a critical treatment for cancer but poses significant risks to ovarian tissue, particularly in young females, leading to premature ovarian failure (POF). This study examines the therapeutic potential of etoricoxib nanostructured lipid carriers (ETO-NLC) in mitigating radiation-induced ovarian damage in female rats. Twenty-four female rats were randomly assigned to four groups: a control group receiving normal saline, a group exposed to a single dose of whole-body gamma radiation (6 Gy), a group treated with etoricoxib (10 mg/kg) post-radiation, and a group treated with ETO-NLC for 14 days following radiation.
View Article and Find Full Text PDFAntibiotics (Basel)
January 2025
Department of Food Microbiology, Hygiene, and Safety, Hungarian University of Agriculture and Life Sciences, H-1118 Budapest, Hungary.
Antibiotic-resistant bacteria are becoming a major challenge in human and veterinary medicine, as well as in food processing. In this study, the protein diversity in antibiotic-sensitive and -resistant strains of and was investigated by exposing them to varying doses of gamma irradiation, with and without antibiotic presence. Changes in bacterial protein profiles were characterized using MALDI-TOF MS to reveal dose-dependent adaptations and potentiation effects under combined irradiation and antibiotic treatments.
View Article and Find Full Text PDFInt J Radiat Biol
January 2025
ICAR-Indian Institute of Horticultural Research, Bengaluru, India.
Purpose: Tuberose ( [Medik.]) is a vegetatively propagated commercial flower crop with limited genetic variability. Crossing barriers prevailing in tuberose necessitates modern breeding techniques like in vitro mutagenesis to generate variability.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!