The objective was to develop a stable and non-compliance coated solid-lipid nanoparticles (coated SLN) using polymer (Eudragit L100) and lipoid (glycerol monostearate: soya lecithin) for partial dose reduction of isradipine [ISR; 2.5 mg by combination of bioenhancing agent (rutin; Ru) in equivalent ratio]. The physicochemical characterizations were performed by FT-IR and DSC of elected model drug (ISR), drug mixer with Ru/polymer and coated SLN with Ru (ONbp); the resulted distinctive peaks demonstrated that no chemical interaction and incompatibility found between them. The plasma samples of formulation (ONbp) were analyzed by liquid chromatography (HPLC) using UV-spectrometer. Data were integrated and analyzed with the help of a computer-designed program "" (Thermo Scientific Kinetica, PK/PD Analysis, version 5.0, Philadelphia, PA). The pharmacokinetic study showed 3.2- to 4.7-folds enhancement in oral bioavailability of coated SLN of ISR with Ru (ONbp) when compared to a coated formulation of ISR without Ru (ONps) and conventional drug suspension. studies were revealed significantly at greater extent in (drug stability and solubility) oral absorption, which has shown potential entrapment efficiency (97.85% ± 1.02%) to improve biological activity against hypertension. Hence, nano-system of ISR against hypertension is achieved with consequent dose reduction with enhanced systemic bioavailability.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6376350 | PMC |
http://dx.doi.org/10.1556/1646.10.2018.45 | DOI Listing |
Int J Pharm
January 2025
Department of Pharmaceutics, Faculty of Pharmacy, Damanhour University, Damanhour 22511, Egypt. Electronic address:
Parkinson's disease (PD) is a debilitating neurodegenerative disorder characterized by motor and non-motor symptoms, with limited effective treatment options. This study proposes a novel approach utilizing intranasal delivery of carbenoxolone (CBX) via chitosan-coated solid lipid nanoparticles (CS-coated SLNs) to manage PD symptoms by enhancing CBX delivery and brain targeting. Formulated CS-coated SLNs exhibited favorable quality attributes including particle size (164 ± 0.
View Article and Find Full Text PDFInt J Mol Sci
November 2024
Thrust of Bioscience and Biomedical Engineering, The Hong Kong University of Science and Technology (Guangzhou), Guangzhou 511400, China.
Fucoxanthin (FN), a carotenoid derived from brown seaweed and algae, offers significant health benefits. However, its unique structure leads to challenges in stability and bioavailability. To overcome these issues, we successfully encapsulated fucoxanthin in solid lipid nanoparticles (SLNs) utilizing health-safe materials, achieving remarkable results.
View Article and Find Full Text PDFEur J Pharm Sci
January 2025
Department of Restorative Dentistry and Endodontics, College of Dentistry, King Faisal University, Al-Ahsa, Saudi Arabia.
Solid lipid nanoparticles (SLNs) are becoming increasingly favored for their robust biocompatibility and their capacity to enhance drug solubility, particularly for drugs with limited water solubility. This study delves into the effectiveness of the hot melt sonication technique in fabricating SLNs with high drug loading capabilities and sustained release characteristics. Griseofulvin (GF), chosen as a representative drug due to its poor water solubility, was encapsulated into SLNs composed of stearic acid.
View Article and Find Full Text PDFColloids Surf B Biointerfaces
December 2024
School of Basic Medicine and Forensic Medicine, Henan University of Science and Technology, Luoyang 471023, China.
In the realm of intracellular drug delivery, overcoming the barrier of endosomal entrapment stands as a critical factor influencing the effectiveness of nanodrug delivery systems. This study focuses on the synthesis of an acid-sensitive fatty acid derivative called imidazole-stearic acid (IM-SA). Leveraging the proton sponge effect attributed to imidazole groups, IM-SA was anticipated to play a pivotal role in facilitating endosomal escape.
View Article and Find Full Text PDFMol Pharm
August 2024
Netaji Subhas Chandra Bose Cancer Hospital, 3081 Nayabad, Kolkata 700094, India.
Prostate cancer is a prevalently detected malignancy with a dismal prognosis. Luteinizing-hormone-releasing-hormone (LHRH) receptors are overexpressed in such cancer cells, to which the LHRH-decapeptide can specifically bind. A lipid-polyethylene glycol-conjugated new LHRH-decapeptide analogue (D-P-HLH) was synthesized and characterized.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!