The purpose of this article is to explore a model of learning that proposes that various learning strategies are powerful at certain stages in the learning cycle. The model describes three inputs and outcomes (skill, will and thrill), success criteria, three phases of learning (surface, deep and transfer) and an acquiring and consolidation phase within each of the surface and deep phases. A synthesis of 228 meta-analyses led to the identification of the most effective strategies. The results indicate that there is a subset of strategies that are effective, but this effectiveness depends on the phase of the model in which they are implemented. Further, it is best not to run separate sessions on learning strategies but to embed the various strategies within the content of the subject, to be clearer about developing both surface and deep learning, and promoting their associated optimal strategies and to teach the skills of transfer of learning. The article concludes with a discussion of questions raised by the model that need further research.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6380372 | PMC |
http://dx.doi.org/10.1038/npjscilearn.2016.13 | DOI Listing |
JMIR Med Educ
January 2025
Department of Orthopedics, First Affiliated Hospital of Nanjing Medical University, Nanjing, China.
Background: Teaching severe pelvic trauma poses a significant challenge in orthopedic surgery education due to the necessity of both clinical reasoning and procedural operational skills for mastery. Traditional methods of instruction, including theoretical teaching and mannequin practice, face limitations due to the complexity, the unpredictability of treatment scenarios, the scarcity of typical cases, and the abstract nature of traditional teaching, all of which impede students' knowledge acquisition.
Objective: This study aims to introduce a novel experimental teaching methodology for severe pelvic trauma, integrating virtual reality (VR) technology as a potent adjunct to existing teaching practices.
J Chem Inf Model
January 2025
Department of Medicinal Chemistry, School of Pharmacy, Fudan University, 826 Zhangheng Road, Shanghai 201203, People's Republic of China.
In recent decades, covalent inhibitors have emerged as a promising strategy for therapeutic development, leveraging their unique mechanism of forming covalent bonds with target proteins. This approach offers advantages such as prolonged drug efficacy, precise targeting, and the potential to overcome resistance. However, the inherent reactivity of covalent compounds presents significant challenges, leading to off-target effects and toxicities.
View Article and Find Full Text PDFPLoS One
January 2025
Department of Electrical and Computer Engineering, University of Toronto, Toronto, Ontario, Canada.
There is a growing need to document sociodemographic factors in electronic medical records to produce representative cohorts for medical research and to perform focused research for potentially vulnerable populations. The objective of this work was to assess the content of family physicians' electronic medical records and characterize the quality of the documentation of sociodemographic characteristics. Descriptive statistics were reported for each sociodemographic characteristic.
View Article and Find Full Text PDFPLoS One
January 2025
Faculty of Medicine, Department of Simulation Medicine, Masaryk University, Brno, Czech Republic.
This study aims to provide an updated overview of medical error taxonomies by building on a robust review conducted in 2011. It seeks to identify the key characteristics of the most suitable taxonomy for use in high-fidelity simulation-based postgraduate courses in Critical Care. While many taxonomies are available, none seem to be explicitly designed for the unique context of healthcare simulation-based education, in which errors are regarded as essential learning opportunities.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!