The analysis of structural and functional neuroimaging data using graph theory has increasingly become a popular approach for visualising and understanding anatomical and functional relationships between different cerebral areas. In this work we applied a network-based approach for brain PET studies using population-based covariance matrices, with the aim to explore topological tracer kinetic differences in cross-sectional investigations. Simulations, test-retest studies and applications to cross-sectional datasets from three different tracers ([F]FDG, [F]FDOPA and [C]SB217045) and more than 400 PET scans were investigated to assess the applicability of the methodology in healthy controls and patients. A validation of statistics, including the assessment of false positive differences in parametric versus permutation testing, was also performed. Results showed good reproducibility and general applicability of the method within the range of experimental settings typical of PET neuroimaging studies, with permutation being the method of choice for the statistical analysis. The use of graph theory for the quantification of [F]FDG brain PET covariance, including the definition of an entropy metric, proved to be particularly relevant for Alzheimer's disease, showing an association with the progression of the pathology. This study shows that covariance statistics can be applied to PET neuroimaging data to investigate the topological characteristics of the tracer kinetics and its related targets, although sensitivity to experimental variables, group inhomogeneities and image resolution need to be considered when the method is applied to cross-sectional studies.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6385265 | PMC |
http://dx.doi.org/10.1038/s41598-019-39005-8 | DOI Listing |
Nat Metab
January 2025
CECAD Excellence Center, University of Cologne, Cologne, Germany.
Dysfunctions in autophagy, a cellular mechanism for breaking down components within lysosomes, often lead to neurodegeneration. The specific mechanisms underlying neuronal vulnerability due to autophagy dysfunction remain elusive. Here we show that autophagy contributes to cerebellar Purkinje cell (PC) survival by safeguarding their glycolytic activity.
View Article and Find Full Text PDFJ Prev Alzheimers Dis
January 2025
Clinical Memory Research Unit, Clinical Sciences in Malmö, Lund University, Lund, Sweden; Memory Clinic, Skåne University Hospital, Sweden. Electronic address:
As novel, anti-amyloid therapies have become more widely available, access to timely and accurate diagnosis has become integral to ensuring optimal treatment of patients with early-stage Alzheimer's disease (AD). Plasma biomarkers are a promising tool for identifying AD pathology; however, several technical and clinical factors need to be considered prior to their implementation in routine clinical use. Given the rapid pace of advancements in the field and the wide array of available biomarkers and tests, this review aims to summarize these considerations, evaluate available platforms, and discuss the steps needed to bring plasma biomarker testing to the clinic.
View Article and Find Full Text PDFNeurobiol Dis
January 2025
Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, China; National Clinical Research Center for Geriatric Disorders, Xuanwu Hospital, Capital Medical University, Beijing, China. Electronic address:
Background: Investigating brain metabolic networks is crucial for understanding the pathogenesis and functional alterations in Creutzfeldt-Jakob disease (CJD). However, studies on presymptomatic individuals remain limited. This study aimed to examine metabolic network topology reconfiguration in asymptomatic carriers of the PRNP G114V mutation.
View Article and Find Full Text PDFBrain
January 2025
U1237, Physiopathology and Imaging of Neurological Disorders (PhIND), Neuropresage Team; INSERM, University of Caen Normandy; GIP Cyceron, 14000 Caen, France.
Curing Alzheimer's disease remains hampered by an incomplete understanding of its pathophysiology and progression. Exploring dysfunction in medial temporal lobe networks, particularly the anterior-temporal (AT) and posterior-medial (PM) systems, may provide key insights, as these networks exhibit functional connectivity alterations along the entire Alzheimer's continuum, potentially influencing disease propagation. However, the specific changes in each network and their clinical relevance across stages are not yet fully understood.
View Article and Find Full Text PDFJ Neurol
January 2025
Epilepsy Unit - Sleep Disorders Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy.
Background: Temporal lobe epilepsy with isolated amygdala enlargement (TLE-AE) still lacks a definite characterization and controversies exist.
Methods: We conducted a retrospective study identifying brain MRI scans with isolated AE between 2015 and 2021. We collected clinical and paraclinical data of patients with TLE-AE and evaluated the outcome.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!