Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 144
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 144
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 212
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3106
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Sand flies are responsible for the transmission of leishmaniasis, a neglected tropical disease claiming more than 50,000 lives annually. Leishmaniasis is an emerging health risk in tropical and Mediterranean countries as well as temperate regions in North America and Europe. There is an increasing demand for predicting population dynamics and spreading of sand flies to support management and control, yet phenotypic diversity and complex environmental dependence hamper model development. Here, we present the principles for developing predictive species-specific population dynamics models for important disease vectors. Based on these principles, we developed a sand fly population dynamics model with a generic structure where model parameters are inferred using a surveillance dataset collected from Greece and Cyprus. The model incorporates distinct life stages and explicit dependence on a carefully selected set of environmental variables. The model successfully replicates the observations and demonstrates high predictive capacity on the validation dataset from Turkey. The surveillance datasets inform about biological processes, even in the absence of laboratory experiments. Our findings suggest that the methodology can be applied to other vector species to predict abundance, control dispersion, and help to manage the global burden of vector-borne diseases.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6385250 | PMC |
http://dx.doi.org/10.1038/s41598-019-38994-w | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!