Effect of deuterium irradiation on graphite boronized in the NSTX-U tokamak.

Sci Rep

Institute for Advanced Computational Science, Stony Brook University, Stony Brook, NY, 11749, USA.

Published: February 2019

Boronization has been used in the National Spherical Torus-Upgrade (NSTX-U) as first wall conditioning technique. The technique decreased the oxygen impurities in the plasma and the O% on the Plasma Facing Components (PFC) as measured with an in-vacuo probe. Samples were extracted from tiles removed from the tokamak for post-mortem and controlled studies. Ex-vessel low energy and fluence D and Ar irradiations were characterized in-situ to elucidate surface evolution of a cored graphite sample with an intrinsic concentration of boron from a tokamak environment. In addition, quadrupole mass spectrometer measurements of emitted D-containing species during irradiation, indicate potential retention of D by the boronized graphite interface and correlated back to the surface chemistry evolution. Classical Molecular Dynamics (CMD) simulations were used to investigate the chemistry of the B-C-O-D system. The results suggest that boron coatings retain oxygen by forming oxidized boron states in the presence of deuterium plasmas and corroborate empirical findings. A four times increase in the O% of the boron coatings was observed following in-situ deuterium exposures, in contrast with a reduction of equal magnitude observed after Ar irradiations. These results illustrate the complex chemistry driven by energetic ions at the edge of tokamaks plasmas on the PFCs.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6385375PMC
http://dx.doi.org/10.1038/s41598-019-38941-9DOI Listing

Publication Analysis

Top Keywords

boron coatings
8
deuterium irradiation
4
irradiation graphite
4
graphite boronized
4
boronized nstx-u
4
nstx-u tokamak
4
tokamak boronization
4
boronization national
4
national spherical
4
spherical torus-upgrade
4

Similar Publications

In this present study, we developed and characterized a series of supramolecular G4 hydrogels by integrating -cyclodextrin (-CD) and boronic acid linkers into a supramolecular matrix to enhance antibacterial activity against (). We systematically investigated how varying the number of free boronic acid moieties (ranging from two to six), along with guanosine and β-CD content, influences both the structural integrity and antimicrobial efficacy of these materials. Comprehensive characterization using FTIR, circular dichroism, X-ray diffraction, SEM, AFM, and rheological measurements confirmed successful synthesis and revealed that higher boronic acid content correlated with a stronger, more organized network.

View Article and Find Full Text PDF

Enhancement of Thermal, Mechanical, and Oxidative Properties of Polypropylene Composites with Exfoliated Hexagonal Boron Nitride Nanosheets.

ACS Omega

January 2025

Department of Materials Science and Engineering, Gachon University, 1342, Seongnam-daero, Sujeong-gu, Seongnam-si, Gyeonggi-do 13120, South Korea.

This study investigates the enhancement of polypropylene (PP) composites through the incorporation of exfoliated hexagonal boron nitride (h-BN) nanosheets. The preparation process involved exfoliating h-BN in a liquid phase using a high-pressure homogenizer, followed by the coating of PP pellets with the exfoliated nanosheets using an acoustic mixer. Melt extrusion was then employed to fabricate h-BN-reinforced PP composite films.

View Article and Find Full Text PDF

Flexible Tactile Sensors with Self-Assembled Cilia Based on Magnetoelectric Composites.

ACS Appl Mater Interfaces

January 2025

School of Precision Instrument and Optoelectronics Engineering, Tianjin University, 92 Weijin Road, Tianjin 300072, China.

Traditional tactile sensors are single-function, and it is difficult to meet the needs of applications in complex environments. This paper describes the development and applications of flexible tactile sensors with cilia based on magnetoelectric composites made of neodymium iron boron (NdFeB) microparticles with a silver (Ag) nanoshell in polydimethylsiloxane (PDMS). These sensors adopt the inherent magnetism of NdFeB microparticles and the excellent conductivity of the Ag coating.

View Article and Find Full Text PDF

Pulsed-Current Operation Enhances HO Production on a Boron-Doped Diamond Mesh Anode in a Zero-Gap PEM Electrolyzer.

ChemSusChem

January 2025

Department of Chemical Engineering, MESA+ Institute for Nanotechnology, Faculty of Science and Technology, University of Twente, Drienerlolaan 5, 7522 NB, Enschede, The, Netherlands.

A niobium (Nb) mesh electrode was coated with boron-doped diamond (BDD) using chemical vapor deposition in a custom-built hot-filament reactor. The BDD-functionalized mesh was tested in a zero-gap electrolysis configuration and evaluated for the anodic formation of HO by selective oxidation of water, including the analysis of the effects on Faradaic efficiency towards HO (FEH2O2) induced by pulsed electrolysis. A low electrolyte flow rate (V⋅) was found to result in a relatively high concentration of HO in single-pass electrolysis experiments.

View Article and Find Full Text PDF

In Situ Growth of Metal-Organic Layer on Polyoxometalate-etching CuO to Boost CO Reduction with High Stability.

Angew Chem Int Ed Engl

January 2025

Institute for New Energy Materials and Low Carbon Technologies, School of Materials Science & Engineering, Tianjin University of Technology, Tianjin, 300384, China.

Low-cost CuO with a suitable band gap holds great potential for solar utilization. However severe photocorrosion and weak CO capture capability have significantly hindered their application in artificial photosynthesis. Herein, polyoxometalate (POM)-etching and in situ growth of metal-organic framework (MOF) can simultaneously incorporate electron-sponge and HKUST protective layer into CuO.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!